1
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Huang YS, Hsueh HY, Aimi J, Chou LC, Lu YC, Kuo SW, Wang CC, Chen KY, Huang CF. Effects of various Cu(0), Fe(0), and proanthocyanidin reducing agents on Fe( iii)-catalysed ATRP for the synthesis of PMMA block copolymers and their self-assembly behaviours. Polym Chem 2020. [DOI: 10.1039/d0py00658k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Well-defined PMMA, PMMA-b-PBzMA and PMMA-b-PBMA polymers were obtained via green Fe-ATRP with the aid of proanthocyanidins. Interestingly, microphase separation was observed in PMMA-b-PBMA polymer with upper critical ordering temperature behaviour.
Collapse
Affiliation(s)
- Yi-Shen Huang
- Department of Chemical Engineering
- i-Center for Advanced Science and Technology (iCAST)
- National Chung Hsing University
- Taichung 40227
- Taiwan
| | - Han-Yu Hsueh
- Department of Materials Science and Engineering
- National Chung Hsing University
- Taichung 40227
- Taiwan
| | - Junko Aimi
- Molecular Design & Function Group
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Li-Chieh Chou
- Department of Chemical Engineering
- i-Center for Advanced Science and Technology (iCAST)
- National Chung Hsing University
- Taichung 40227
- Taiwan
| | - Yu-Chi Lu
- Department of Chemical Engineering
- i-Center for Advanced Science and Technology (iCAST)
- National Chung Hsing University
- Taichung 40227
- Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science
- Center of Crystal Research
- National Sun Yat-Sen University
- Kaohsiung 80424
- Taiwan
| | - Chung-Chi Wang
- Division of Cardiovascular Surgery
- Veterans General Hospital
- Taichung
- Taiwan
| | - Kuo-Yu Chen
- Department of Chemical and Materials Engineering
- National Yunlin University of Science and Technology
- Yunlin 64002
- Taiwan
| | - Chih-Feng Huang
- Department of Chemical Engineering
- i-Center for Advanced Science and Technology (iCAST)
- National Chung Hsing University
- Taichung 40227
- Taiwan
| |
Collapse
|
3
|
Ribelli TG, Lorandi F, Fantin M, Matyjaszewski K. Atom Transfer Radical Polymerization: Billion Times More Active Catalysts and New Initiation Systems. Macromol Rapid Commun 2018; 40:e1800616. [DOI: 10.1002/marc.201800616] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas G. Ribelli
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Marco Fantin
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
4
|
Wang Y, Han G, Duan W, Zhang W. ICAR ATRP in PEG with Low Concentration of Cu(II) Catalyst: A Versatile Method for Synthesis of Block Copolymer Nanoassemblies under Dispersion Polymerization. Macromol Rapid Commun 2018; 40:e1800140. [DOI: 10.1002/marc.201800140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/17/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Yixin Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education; Institute of Polymer Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials; Beijing Oriental Yuhong Waterproof Technology Co., Ltd; Beijing 100123 China
| | - Wenfeng Duan
- State Key Laboratory of Special Functional Waterproof Materials; Beijing Oriental Yuhong Waterproof Technology Co., Ltd; Beijing 100123 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education; Institute of Polymer Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| |
Collapse
|
5
|
Yao L, Zhang B, Jiang H, Zhang L, Zhu X. Poly(Ionic Liquid): A New Phase in a Thermoregulated Phase Separated Catalysis and Catalyst Recycling System of Transition Metal-Mediated ATRP. Polymers (Basel) 2018; 10:E347. [PMID: 30966382 PMCID: PMC6415167 DOI: 10.3390/polym10040347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022] Open
Abstract
Poly(ionic liquid)s (PILs) have become the frontier domains in separation science because of the special properties of ionic liquids as well as their corresponding polymers. Considering their function in separation, we designed and synthesized a thermoregulated PIL. That is, this kind of PIL could separate with an organic phase which dissolves the monomers at ambient temperature. When heated to the reaction temperature, they become a homogeneous phase, and they separate again when the temperature falls to the ambient temperature after polymerization. Based on this, a thermoregulated phase separated catalysis (TPSC) system for Cu-based atom transfer radical polymerization (ATRP) was constructed. The copper catalyst (CuBr₂) used here is easily separated and recycled in situ just by changing the temperature in this system. Moreover, even when the catalyst had been recycled five times, the controllability over resultant polymers is still satisfying. Finally, only 1~2 ppm metal catalyst was left in the polymer solution phase, which indicates the really high recycling efficiency.
Collapse
Affiliation(s)
- Lan Yao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Bingjie Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Hongjuan Jiang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
- Changzhou Huake Polymers Co., Ltd., 602 Yulong Road, Xinbei District, Changzhou 213022, China.
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
- Global Institute of Soft Technology, No. 5 Qingshan Road, Suzhou National Hi-Tech District, Suzhou 215163, China.
| |
Collapse
|