1
|
Wan X, Wang W, Zhou Y, Ma X, Guan M, Liu F, Chen S, Fan JX, Yan GP. Self-Delivery Nanoplatform Based on Amphiphilic Apoptosis Peptide for Precise Mitochondria-Targeting Photothermal Therapy. Mol Pharm 2024; 21:1537-1547. [PMID: 38356224 DOI: 10.1021/acs.molpharmaceut.3c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Mitochondria-targeting photothermal therapy could significantly enhance the tumor cell killing effect. However, since therapeutic reagents need to overcome a series of physiological obstacles to arrive at mitochondria accurately, precise mitochondria-targeting photothermal therapy still faces great challenges. In this study, we developed a self-delivery nanoplatform that specifically targeted the mitochondria of tumor cells for precise photothermal therapy. Photothermal agent IR780 was encapsulated by amphiphilic apoptotic peptide KLA with mitochondria-targeting ability to form nanomicelle KI by self-assembly through hydrophilic and hydrophobic interactions. Subsequently, negatively charged tumor-targeting polymer HA was coated on the surface of KI through electrostatic interactions, to obtain tumor mitochondria-targeting self-delivery nanoplatform HKI. Through CD44 receptor-mediated recognition, HKI was internalizated by tumor cells and then disassembled in an acidic environment with hyaluronidase in endosomes, resulting in the release of apoptotic peptide KLA and photothermal agent IR780 with mitochondria anchoring capacity, which achieved precise mitochondria guidance and destruction. This tumor mitochondria-targeting self-delivery nanoplatform was able to effectively deliver photothermal agents and apoptotic peptides to tumor cell mitochondria, resulting in precise destruction to mitochondria and enhancing tumor cell inhibition at the subcellular organelle level.
Collapse
Affiliation(s)
- Xin Wan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wensong Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yutian Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaoyu Ma
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Meng Guan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fan Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Si Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guo-Ping Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
2
|
Gong Z, Peng S, Cao J, Tan H, Zhao H, Bai J. Advances in the variations and biomedical applications of stimuli-responsive nanodrug delivery systems. NANOTECHNOLOGY 2024; 35:132001. [PMID: 38198449 DOI: 10.1088/1361-6528/ad170b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Chemotherapy is an important cancer treatment modality, but the clinical utility of chemotherapeutics is limited by their toxic side effects, inadequate distribution and insufficient intracellular concentrations. Nanodrug delivery systems (NDDSs) have shown significant advantages in cancer diagnosis and treatment. Variable NDDSs that respond to endogenous and exogenous triggers have attracted much research interest. Here, we summarized nanomaterials commonly used for tumor therapy, such as peptides, liposomes, and carbon nanotubes, as well as the responses of NDDSs to pH, enzymes, magnetic fields, light, and multiple stimuli. Specifically, well-designed NDDSs can change in size or morphology or rupture when induced by one or more stimuli. The varying responses of NDDSs to stimulation contribute to the molecular design and development of novel NDDSs, providing new ideas for improving drug penetration and accumulation, inhibiting tumor resistance and metastasis, and enhancing immunotherapy.
Collapse
Affiliation(s)
- Zhongying Gong
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061, People's Republic of China
| | - Shan Peng
- School of Stomatology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Juanjuan Cao
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Jinan 250012, People's Republic of China
| | - Hongxia Zhao
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061, People's Republic of China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| |
Collapse
|
3
|
Wang WS, Ma XY, Zheng SY, Chen S, Fan JX, Liu F, Yan GP. Nucleus-Targeting Nanoplatform Based on Dendritic Peptide for Precise Photothermal Therapy. Polymers (Basel) 2023; 15:polym15071753. [PMID: 37050365 PMCID: PMC10096676 DOI: 10.3390/polym15071753] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Photothermal therapy directly acting on the nucleus is a potential anti-tumor treatment with higher killing efficiency. However, in practical applications, it is often difficult to achieve precise nuclear photothermal therapy because agents are difficult to accurately anchor to the nucleus. Therefore, it is urgent to develop a nanoheater that can accurately locate the nucleus. Here, we designed an amphiphilic arginine-rich dendritic peptide (RDP) with the sequence CRRK(RRCG(Fmoc))2, and prepared a nucleus-targeting nanoplatform RDP/I by encapsulating the photothermal agent IR780 in RDP for precise photothermal therapy of the tumor nucleus. The hydrophobic group Fmoc of the dendritic peptide provides strong hydrophobic force to firmly encapsulate IR780, which improves the solubility and stability of IR780. Moreover, the arginine-rich structure facilitates cellular uptake of RDP/I and endows it with the ability to quickly anchor to the nucleus. The nucleus-targeting nanoplatform RDP/I showed efficient nuclear enrichment ability and a significant tumor inhibition effect.
Collapse
|
4
|
Mahi B, Gauthier M, Hadjichristidis N. Hybrid Arborescent Polypeptide-Based Unimolecular Micelles: Synthesis, Characterization, and Drug Encapsulation. Biomacromolecules 2022; 23:2441-2458. [PMID: 35588158 DOI: 10.1021/acs.biomac.2c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper reports novel hybrid arborescent polypeptides based on poly(γ-benzyl l-glutamate)-co-poly(γ-tert-butyl l-glutamate)-g-polysarcosine [P(BG-co-Glu(OtBu))-g-PSar]. The synthesis is launched by ring-opening polymerization (ROP) of N-carboxyanhydride of γ-benzyl l-glutamate (BG-NCA) and γ-tert-butyl l-glutamate (Glu(OtBu)-NCA) to synthesize a random copolymer P(BG-co-Glu(OtBu)) serving as a precursor for the arborescent system, followed by deprotection of the tert-butyl (tBu) groups to afford free COOH moieties serving as coupling sites. Two copolymerization reactions were carried out to afford the side chains. One type of side chain was a random copolymer P(BG-co-Glu(OtBu)), while the other type was a triblock copolymer PGlu(OtBu)-b-PBG-b-PGlu(OtBu). The peptide coupling reactions were conducted between the COOH moieties on the precursor and the terminus amine on the chain end of the P(BG-co-Glu(OtBu)) random copolymer or the PGlu(OtBu)-b-PBG-b-PGlu(OtBu) triblock copolymer to obtain G0 polymers. Afterward, hydrolyzing the tBu moieties of the G0 substrates yielded randomly functionalized G0 and end-functionalized G0. Randomly functionalized G0 was used as a substrate for the next generation G1 (randomly functionalized and end-functionalized G1 after deprotection) or coated with polysarcosine (PSar) to gain G0-g-PSar. The G0 substrate prepared with the triblock copolymer PGlu(OtBu)-b-PBG-b-PGlu(OtBu) was only grafted with PSar after deprotection, resulting in G0-eg-PSar. Depending on the functionality mode of the G1 substrate, the PSar coating yielded two different graft polymers, G1-g-PSar and G1-eg-PSar, for randomly functionalized and end-functionalized G1, respectively. The PSar hydrophilic shell was decorated with the sequence of (arginine, glycine, and aspartic acid) tripeptides (RGD) as a targeting ligand to improve the potentiality of the arborescent unimolecular micelles as drug carriers. Preparative size exclusion chromatography (SEC) was used to fractionate these complex macromolecular architectures. Nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), Raman spectroscopy, and SEC were used for molecular characterization of all intermediate and final products and dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) for micellar characterization. A comparison between randomly grafted (g) and end-grafted (eg) unimolecular micelles demonstrates that the former has an undefined core-shell structure, unlike its end-grafted analog. In addition, this study has proved that decoration of the shell with RGD contributed to avoiding micelle aggregation but limited chemotherapy agent encapsulation. However, more than their naked analog, the sustained release was noticeable in decorated micelles. Doxorubicin was utilized as a chemotherapy model, and loading was achieved successfully by physical entrapment.
Collapse
Affiliation(s)
- Basma Mahi
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Mario Gauthier
- Department of Chemistry, Institute for Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
5
|
Nano Drug Delivery Systems: Effective Therapy Strategies to Overcome Multidrug Resistance in Tumor Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Chen S, Li J, Ma X, Liu F, Yan G. Cationic Peptide-Modified Gold Nanostars as Efficient Delivery Platform for RNA Interference Antitumor Therapy. Polymers (Basel) 2021; 13:polym13213764. [PMID: 34771323 PMCID: PMC8587007 DOI: 10.3390/polym13213764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
siRNA interference therapy can silence tumor cell target genes and specifically regulate tumor cell behavior and function, which is an effective antitumor therapy. However, in somatic circulation, naked siRNAs are not only susceptible to degrade, but it is also difficult to realize the tumor cells' internalization. Therefore, novel siRNA delivery vectors that could promote efficacy need to be developed urgently. Here, we designed high-surface gold nanostars (GNS-P) which are decorated with cationic tumor-targeting peptide as an efficient and functional siRNA delivery nanoplatform for tumor therapy. The positively charged amino acid sequence and huge surface area enabled the vector to load a large amount of siRNA, while the tumor-targeting peptide sequence and nano size enabled it to rapidly and precisely target the tumor regions for fast and effective siRNA delivery. This tumor-targeting nanoplatform, GNS-P, displayed good biocompatibility, low toxicity and an extraordinary tumor accumulation capability.
Collapse
Affiliation(s)
- Si Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Correspondence: (S.C.); (G.Y.)
| | - Jiguang Li
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
| | - Xiaoyu Ma
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
| | - Fan Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
| | - Guoping Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
- Correspondence: (S.C.); (G.Y.)
| |
Collapse
|
7
|
Lo PY, Lee GY, Zheng JH, Huang JH, Cho EC, Lee KC. Intercalating pyrene with polypeptide as a novel self-assembly nano-carrier for colon cancer suppression in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110593. [PMID: 32228904 DOI: 10.1016/j.msec.2019.110593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 11/18/2022]
Abstract
Giving patients right dosage is an essential concept of precision medicine. Most of nanocarriers lack of flexible drug capacity and structural stability to be customized for specific treatment, resulting in low therapeutic efficacy and unexpected side effects. Thus, a growing need emerges for fast and rigorous approaches to develop nanoparticles with properties of adjustable dosage and controllable particle size. Poly-l-Lysine is known for its enhanced bioadhesivity and pH-triggered structural swelling effect, which is utilized as the main agent to activate the multistage drug releasing. Inspired by natural bio-assembly system, we report a simple method to self-assemble Poly-l-Lysine-based nanoparticles via supramolecular recognitions of cross-linked pyrenes, which provides noncovalent force to flexibly encapsulate Doxorubincin and to construct robust nanostructures. Pyrene-modified polypeptide self-assemblies are able to adjust drug payload from 1: 10 to 2:1 (drug: polypeptide) without changing its uniform nano-spherical morphology. This nanostructure remained the as-made morphology even after experiencing the long-term (~ 10 weeks) storage at room temperature. Also, the nanoparticles displayed multi-step drug release behaviours and exhibited great in vitro and in vivo cytotoxicity towards colon cancer cells. The as-mentioned nanoparticles provide a novel perspective to compensate the clinical needs of specific drug feedings and scalable synthesis with advantages of simple-synthesis, size-adaptivity, and morphology reversibility.
Collapse
Affiliation(s)
- Pei-Ying Lo
- Department of Science Education, National Taipei University of Education, No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City 106, Taiwan
| | - Guang-Yu Lee
- Department of Science Education, National Taipei University of Education, No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City 106, Taiwan
| | - Jia-Huei Zheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City 110, Taiwan
| | - Jen-Hsien Huang
- Department of Green Material Technology, Green Technology Research Institute, CPC Corporation, Kaohsiung 81126, Taiwan
| | - Er-Chieh Cho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City 110, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City 110, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taiwan.
| | - Kuen-Chan Lee
- Department of Science Education, National Taipei University of Education, No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City 106, Taiwan; PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, 110, Taiwan.
| |
Collapse
|
8
|
Chen S, Fan JX, Liu XH, Zhang MK, Liu F, Zeng X, Yan GP, Zhang XZ. A self-delivery system based on an amphiphilic proapoptotic peptide for tumor targeting therapy. J Mater Chem B 2019; 7:778-785. [DOI: 10.1039/c8tb02945h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A self-delivery system KDH was constructed to realize tumor targeting therapy, and it possessed extraordinary therapeutic efficacy both in vitro and in vivo.
Collapse
Affiliation(s)
- Si Chen
- School of Material Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Ming-Kang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Fan Liu
- School of Material Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Guo-Ping Yan
- School of Material Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
9
|
Chen X, Tang Y, Liu A, Zhu Y, Gao D, Yang Y, Sun J, Fan H, Zhang X. NIR-to-Red Upconversion Nanoparticles with Minimized Heating Effect for Synchronous Multidrug Resistance Tumor Imaging and Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14378-14388. [PMID: 29648442 DOI: 10.1021/acsami.8b00409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), especially the 808 nm activated UCNPs, are promising imaging agents for biological applications because of their minimal tissue overheating effects and low autofluorescence background. Optimizing the emission peaks located in the "biological window (600-1100 nm)" is of vital importance to obtain the maximum penetration depth and intense deep tissue imaging. On the other hand, because of the widely existing multidrug resistance (MDR) of tumor cells, traditional tumor chemotherapy often fails to achieve the desired effect. Herein, a new type of 808 nm excited pure red luminescence core-shell Nd3+-sensitized NaY(Mn)F4:Yb/Er@NaYbF4:Nd UCNPs (CSUCNPs) was designed and synthesized for deep tissue imaging and MDR tumor diagnosis with a minimized heating effect. In the meanwhile, d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) coating was introduced to endow CSUCNPs with capabilities of drug loading and overcoming MDR. The in vitro cytotoxicity test revealed that CSUCNPs-TPGS-doxorubicin (D-CSUCT) had excellent MDR cancer cell killing efficacy. The in vivo test showed that D-CSUCT can target the tumor site by enhanced retention effect, and the intense luminescent signals from the tumor site in the deep tissue were detected. Generally, this work shows D-CSUCT can overcome the MDR effect, diagnose the tumor, inhibit tumor growth, and induce tumor cells necrosis and apoptosis, without causing damage to major organs and other side effects. Overall, the study demonstrates the conjugation of red-emitted UCNPs with a minimized heating effect and that the anti-MDR carrier is highly promising for developing multifunctional theranostic system with effective simultaneous diagnosis and for multidrug-resistant tumor treatment.
Collapse
Affiliation(s)
- Xiaoqin Chen
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610065 , Sichuan , P. R. China
| | - Yajun Tang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610065 , Sichuan , P. R. China
| | - Amin Liu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610065 , Sichuan , P. R. China
| | - Yuda Zhu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610065 , Sichuan , P. R. China
| | - Dong Gao
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610065 , Sichuan , P. R. China
| | - You Yang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610065 , Sichuan , P. R. China
| | - Jing Sun
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610065 , Sichuan , P. R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610065 , Sichuan , P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610065 , Sichuan , P. R. China
| |
Collapse
|