1
|
Qiu Z, Wang Y, Li C, Yuan X, Zhu B, Liu J. Interlaminar improvement of carbon fiber/epoxy composites via fluorine‐containing high‐epoxy‐value sizing agent. J Appl Polym Sci 2022. [DOI: 10.1002/app.52665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhijie Qiu
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education) Shandong University Jinan China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering Shandong University Jinan China
| | - Yilei Wang
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education) Shandong University Jinan China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering Shandong University Jinan China
| | - Chengsen Li
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education) Shandong University Jinan China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering Shandong University Jinan China
| | - Xiaomin Yuan
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education) Shandong University Jinan China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering Shandong University Jinan China
| | - Bo Zhu
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education) Shandong University Jinan China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering Shandong University Jinan China
| | - Jianjun Liu
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education) Shandong University Jinan China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering Shandong University Jinan China
| |
Collapse
|
2
|
Paren BA, Nguyen N, Ballance V, Hallinan DT, Kennemur JG, Winey KI. Superionic Li-Ion Transport in a Single-Ion Conducting Polymer Blend Electrolyte. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin A. Paren
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Nam Nguyen
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Valerie Ballance
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Daniel T. Hallinan
- Department of Chemical and Biomedical Engineering, Florida A&M University−Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310, United States
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Karen I. Winey
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Nguyen N, Blatt MP, Kim K, Hallinan DT, Kennemur JG. Investigating miscibility and lithium ion transport in blends of poly(ethylene oxide) with a polyanion containing precisely-spaced delocalized charges. Polym Chem 2022. [DOI: 10.1039/d2py00605g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Synthesis of a precision single ion conductor with a phenylsulfonyl (TFSI) lithium salt pendant at every 5th carbon is reported and miscibility, conductivity, and transference studies are performed upon blending with PEO at varying compositions.
Collapse
Affiliation(s)
- Nam Nguyen
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
| | - Michael Patrick Blatt
- Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
| | - Kyoungmin Kim
- Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
| | - Daniel T. Hallinan
- Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
| |
Collapse
|
4
|
Park J, Easterling CP, Armstrong CC, Huber DL, Bowman JI, Sumerlin BS, Winey KI, Taylor MK. Nanoscale layers of precise ion-containing polyamides with lithiated phenyl sulfonate in the polymer backbone. Polym Chem 2022. [DOI: 10.1039/d2py00802e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise polyamide ionomer produces well-defined nanoscale layers.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Charles P. Easterling
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Christopher C. Armstrong
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Dale L. Huber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Jared I. Bowman
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mercedes K. Taylor
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
5
|
Kim K, Nguyen N, Marxsen SF, Smith S, Alamo RG, Kennemur JG, Hallinan DT. Ionic Transport and Thermodynamic Interaction in Precision Polymer Blend Electrolytes for Lithium Batteries. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kyoungmin Kim
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
- Aero‐propulsion, Mechatronics and Energy (AME) Center FAMU‐FSU College of Engineering 2003 Levy Avenue Tallahassee FL 32310 USA
| | - Nam Nguyen
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306 USA
| | - Stephanie F. Marxsen
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
| | - Sage Smith
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
- Aero‐propulsion, Mechatronics and Energy (AME) Center FAMU‐FSU College of Engineering 2003 Levy Avenue Tallahassee FL 32310 USA
| | - Rufina G. Alamo
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306 USA
| | - Daniel T. Hallinan
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
- Aero‐propulsion, Mechatronics and Energy (AME) Center FAMU‐FSU College of Engineering 2003 Levy Avenue Tallahassee FL 32310 USA
| |
Collapse
|
6
|
Paren BA, Thurston BA, Neary WJ, Kendrick A, Kennemur JG, Stevens MJ, Frischknecht AL, Winey KI. Percolated Ionic Aggregate Morphologies and Decoupled Ion Transport in Precise Sulfonated Polymers Synthesized by Ring-Opening Metathesis Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Benjamin A. Paren
- Dept. Of Materials Science & Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Bryce A. Thurston
- Center for Integrated Nanotechnologies, Sandia National Labs, Albuquerque, New Mexico 87185-1411, United States
| | - William J. Neary
- Dept. Of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Aaron Kendrick
- Dept. Of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Justin G. Kennemur
- Dept. Of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Mark J. Stevens
- Center for Integrated Nanotechnologies, Sandia National Labs, Albuquerque, New Mexico 87185-1411, United States
| | - Amalie L. Frischknecht
- Center for Integrated Nanotechnologies, Sandia National Labs, Albuquerque, New Mexico 87185-1411, United States
| | - Karen I. Winey
- Dept. Of Materials Science & Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| |
Collapse
|
7
|
Investigating the effects of bulky allylic substituents on the regioregularity and thermodynamics of ROMP on cyclopentene. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Abstract
This Viewpoint highlights the viability and increasing variety of functionalized polypentenamers as unique and valuable materials created through enthalpy-driven ring-opening metathesis polymerization (ROMP) of low ring strain cyclopentene monomers. The terms "low ring strain" and "enthalpy-driven" are typically conflicting ideologies for successful ROMP; however, these monomers possess a heightened sensitivity to reaction conditions, which may be leveraged in a number of ways to provide performance elastomers with good yield and precise functional topologies. Over the last several years, a rekindled interest in these systems has led to a renaissance of research aimed at improving their synthesis and exploring their potential. Their chemistry, applications, and future outlook are discussed.
Collapse
Affiliation(s)
- William J. Neary
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|