1
|
Nan Y, Zhao C, Beaudoin G, Zhu XX. Synergistic Approaches in the Design and Applications of UCST Polymers. Macromol Rapid Commun 2023; 44:e2300261. [PMID: 37477638 DOI: 10.1002/marc.202300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli-responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications.
Collapse
Affiliation(s)
- Yi Nan
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Guillaume Beaudoin
- Département de Chimie, Université de Montréal, C.P. 6128, Succ, Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - X X Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succ, Centre-ville, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
2
|
Audureau N, Coumes F, Guigner JM, Guibert C, Stoffelbach F, Rieger J. Dual Thermo- and pH-Responsive N-Cyanomethylacrylamide-Based Nano-Objects Prepared by RAFT-Mediated Aqueous Polymerization-Induced Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolas Audureau
- Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Fanny Coumes
- Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Jean-Michel Guigner
- Sorbonne Université & CNRS, UMR 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)-IRD-MNHN, 75252 Paris Cedex 05, France
| | - Clément Guibert
- Sorbonne Université & CNRS, UMR 7197, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - François Stoffelbach
- Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Jutta Rieger
- Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
3
|
Effect of anions, urea and aggregation state on the thermal behavior of PDMAEMA-based polymers. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
|
4
|
Wenisch SE, Schaffer A, Rieger B. Effect of Hofmeister Salts on the LCST of Poly(diethyl vinylphosphonate) and Poly(2‐vinylpyridine‐
block‐
diethyl vinylphosphonate). MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sandra E. Wenisch
- WACKER‐Lehrstuhl für Makromolekulare Chemie Catalysis Research Center Department of Chemistry Technische Universität München 85748 Garching bei München Germany
| | - Andreas Schaffer
- WACKER‐Lehrstuhl für Makromolekulare Chemie Catalysis Research Center Department of Chemistry Technische Universität München 85748 Garching bei München Germany
| | - Bernhard Rieger
- WACKER‐Lehrstuhl für Makromolekulare Chemie Catalysis Research Center Department of Chemistry Technische Universität München 85748 Garching bei München Germany
| |
Collapse
|
5
|
Effect of the macromolecular architecture on the thermoresponsive behavior of poly(N-isopropylacrylamide) in copolymers with poly(N,N-dimethylacrylamide) in aqueous solutions: Block vs random copolymers. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
6
|
Audureau N, Coumes F, Veith C, Guibert C, Guigner JM, Stoffelbach F, Rieger J. Synthesis and Characterization of Temperature-Responsive N-Cyanomethylacrylamide-Containing Diblock Copolymer Assemblies in Water. Polymers (Basel) 2021; 13:4424. [PMID: 34960975 PMCID: PMC8707179 DOI: 10.3390/polym13244424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 01/31/2023] Open
Abstract
We have previously demonstrated that poly(N-cyanomethylacrylamide) (PCMAm) exhibits a typical upper-critical solution temperature (UCST)-type transition, as long as the molar mass of the polymer is limited, which was made possible through the use of reversible addition-fragmentation chain transfer (RAFT) radical polymerization. In this research article, we use for the first time N-cyanomethylacrylamide (CMAm) in a typical aqueous dispersion polymerization conducted in the presence of poly(N,N-dimethylacrylamide) (PDMAm) macroRAFT agents. After assessing that well-defined PDMAm-b-PCMAm diblock copolymers were formed through this aqueous synthesis pathway, we characterized in depth the colloidal stability, morphology and temperature-responsiveness of the dispersions, notably using cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and turbidimetry. The combined analyses revealed that stable nanometric spheres, worms and vesicles could be prepared when the PDMAm block was sufficiently long. Concerning the thermoresponsiveness, only diblocks with a PCMAm block of a low degree of polymerization (DPn,PCMAm < 100) exhibited a UCST-type dissolution upon heating at low concentration. In contrast, for higher DPn,PCMAm, the diblock copolymer nano-objects did not disassemble. At sufficiently high temperatures, they rather exhibited a temperature-induced secondary aggregation of primary particles. In summary, we demonstrated that various morphologies of nano-objects could be obtained via a typical polymerization-induced self-assembly (PISA) process using PCMAm as the hydrophobic block. We believe that the development of this aqueous synthesis pathway of novel PCMAm-based thermoresponsive polymers will pave the way towards various applications, notably as thermoresponsive coatings and in the biomedical field.
Collapse
Affiliation(s)
- Nicolas Audureau
- Polymer Chemistry Team, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université & CNRS, UMR 8232, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (N.A.); (F.C.); (C.V.)
| | - Fanny Coumes
- Polymer Chemistry Team, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université & CNRS, UMR 8232, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (N.A.); (F.C.); (C.V.)
| | - Clémence Veith
- Polymer Chemistry Team, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université & CNRS, UMR 8232, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (N.A.); (F.C.); (C.V.)
| | - Clément Guibert
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, 4 Place Jussieu, CEDEX 05, 75252 Paris, France;
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)-IRD-MNHN, Sorbonne Université & CNRS, UMR 7590, CEDEX 05, 75252 Paris, France;
| | - François Stoffelbach
- Polymer Chemistry Team, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université & CNRS, UMR 8232, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (N.A.); (F.C.); (C.V.)
| | - Jutta Rieger
- Polymer Chemistry Team, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université & CNRS, UMR 8232, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (N.A.); (F.C.); (C.V.)
| |
Collapse
|
7
|
Stimuli-responsive electrospun nanofibers based on PNVCL-PVAc copolymer in biomedical applications. Prog Biomater 2021; 10:245-258. [PMID: 34731487 DOI: 10.1007/s40204-021-00168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022] Open
Abstract
Poly(N-vinylcaprolactam) (PNVCL) is a suitable alternative for biomedical applications due to its biocompatibility, biodegradability, non-toxicity, and showing phase transition at the human body temperature range. The purpose of this study was to synthesize a high molecular weight PNVCL-PVAc thermo-responsive copolymer with broad mass distribution suitable for electrospun nanofiber fabrication. The chemical structure of the synthesized materials was detected by FTIR and 1HNMR spectroscopies. N-Vinyl caprolactam/vinyl acetate copolymers (159,680 molecular weight (g/mol) and 2.51 PDI) were synthesized by radical polymerization. The phase transition temperature of N-vinyl caprolactam/vinyl acetate copolymer was determined by conducting a contact angle test at various temperatures (25, 26, 28, and 30 [Formula: see text]). The biocompatibility of the nanofibers was also evaluated, and both qualitative and quantitative results showed that the growth and proliferation of 929L mouse fibroblast cells increased to 80% within 48 h. These results revealed that the synthesized nanofibers were biocompatible and not cytotoxic. The results confirmed that the synthesized copolymers have good characteristics for biomedical applications.
Collapse
|
8
|
Audureau N, Veith C, Coumes F, Nguyen TPT, Rieger J, Stoffelbach F. RAFT-Polymerized N-Cyanomethylacrylamide-Based (Co)polymers Exhibiting Tunable UCST Behavior in Water. Macromol Rapid Commun 2021; 42:e2100556. [PMID: 34658099 DOI: 10.1002/marc.202100556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2021] [Revised: 10/02/2021] [Indexed: 11/09/2022]
Abstract
In this present work, the synthesis of a new family of upper critical solution temperature (UCST)-thermoresponsive polymers based on N-cyanomethylacrylamide (CMAm) is reported. It is demonstrated that the thermally initiated reversible addition fragmentation chain transfer (RAFT) polymerization of CMAm conducted in N,N-dimethylformamide (DMF) is well controlled. The homopolymer presents a sharp and reversible UCST-type phase transition in pure water with a very small hysteresis between cooling and heating cycles. It is demonstrated that the cloud point (TCP ) of poly(N-cyanomethylacrylamide) (PCMAm) is strongly molar mass dependent and shifts toward lower temperatures in saline water. Moreover, the transition temperature can be tuned over a large temperature range by copolymerization of CMAm with acrylamide or acrylic acid. The latter copolymers are both thermoresponsive and pH responsive. Interestingly, by this strategy sharp and reversible UCST-type transitions close to physiological temperature can be reached, which makes the copolymers extremely interesting candidates for biomedical applications.
Collapse
Affiliation(s)
- Nicolas Audureau
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Paris Cedex 05, 75252, France
| | - Clémence Veith
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Paris Cedex 05, 75252, France
| | - Fanny Coumes
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Paris Cedex 05, 75252, France
| | - Thi Phuong Thu Nguyen
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Paris Cedex 05, 75252, France
| | - Jutta Rieger
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Paris Cedex 05, 75252, France
| | - François Stoffelbach
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Paris Cedex 05, 75252, France
| |
Collapse
|
9
|
Gayathri V, Jaisankar SN, Samanta D. Temperature and pH responsive polymers: sensing applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1988636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Affiliation(s)
- Varnakumar Gayathri
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Sellamuthu Nagappan Jaisankar
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Debasis Samanta
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
10
|
Lerch A, Käfer F, Prévost S, Agarwal S, Karg M. Structural Insights into Polymethacrylamide-Based LCST Polymers in Solution: A Small-Angle Neutron Scattering Study. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arne Lerch
- Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Florian Käfer
- Macromolekulare Chemie II, Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany
| | - Sylvain Prévost
- Institut Laue-Langevin, 71 avenue des Martyrs, Grenoble 38042, France
| | - Seema Agarwal
- Macromolekulare Chemie II, Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany
| | - Matthias Karg
- Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
11
|
Lu J, Zhou X, Sun J, Xu M, Zhang M, Zhao C. Small dop of comonomer, giant shift of cloud point: Thermo‐responsive behavior and mechanism of poly(methylacrylamide) copolymers with an upper critical solution temperature. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jianlei Lu
- Faculty of Material Science and Chemical Engineering Ningbo University Ningbo China
| | - Xionglin Zhou
- Faculty of Material Science and Chemical Engineering Ningbo University Ningbo China
| | - Jialin Sun
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering Chinese Academy of Medical Science and Peking Union Medical College Tianjin China
| | - Mengdi Xu
- Faculty of Material Science and Chemical Engineering Ningbo University Ningbo China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering Chinese Academy of Medical Science and Peking Union Medical College Tianjin China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering Ningbo University Ningbo China
| |
Collapse
|
12
|
Lu J, Xu M, Lei Y, Gong L, Zhao C. Aqueous Synthesis of Upper Critical Solution Temperature and Lower Critical Solution Temperature Copolymers through Combination of Hydrogen-Donors and Hydrogen-Acceptors. Macromol Rapid Commun 2021; 42:e2000661. [PMID: 33480461 DOI: 10.1002/marc.202000661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Indexed: 11/06/2022]
Abstract
The synthesis of thermo-responsive polymers from non-responsive and water-soluble monomers has great practical advantages but significant challenges. Herein, the authors report a novel aqueous copolymerization strategy to prepare polymers with tunable upper critical solution temperature (UCST) or lower critical solution temperature (LCST) from non-responsive monomers. Acrylic acid (AAc), N-vinylpyrrolidone (NVP), and acrylamide (AAm) are copolymerized in water, yielding copolymers with UCST behavior. Interestingly, by simply replacing AAm with its methylated homologue, dimethyl acrylamide (DMA), the thermo-responsiveness of the copolymers is converted into LCST-type. The cloud points of the copolymers can be tuned rationally with their monomer ratios and the condition of the solvent. The UCST property of the poly(AAc-NVP-AAm) comes from the AAc-AAm and AAc-NVP hydrogen-bonds, while the LCST property of poly(AAc-NVP-DMA) originates from the hydrophobic aggregation of AAc-NVP complex and DMA, as indicated by temperature-dependent 1 H NMR and dynamic light scattering.
Collapse
Affiliation(s)
- Jianlei Lu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Mengdi Xu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yi Lei
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lihao Gong
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chuanzhuang Zhao
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
13
|
Xu J, Abetz V. Nonionic UCST–LCST Diblock Copolymers with Tunable Thermoresponsiveness Synthesized via PhotoRAFT Polymerization. Macromol Rapid Commun 2021; 42:e2000648. [DOI: 10.1002/marc.202000648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2020] [Revised: 12/06/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Jingcong Xu
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 Hamburg 20146 Germany
| | - Volker Abetz
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 Hamburg 20146 Germany
- Institute of Polymer Research Helmholtz‐Zentrum Geesthacht Max‐Planck‐Straße 1 Geesthacht 21502 Germany
| |
Collapse
|
14
|
Eckert T, Abetz V. Polymethacrylamide—An underrated and easily accessible upper critical solution temperature polymer: Green synthesis via photoiniferter reversible addition–fragmentation chain transfer polymerization and analysis of solution behavior in water/ethanol mixtures. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tilman Eckert
- Helmholtz‐Zentrum Geesthacht Institute of Polymer Research Geesthacht Germany
- Institute of Physical Chemistry University of Hamburg Hamburg Germany
| | - Volker Abetz
- Helmholtz‐Zentrum Geesthacht Institute of Polymer Research Geesthacht Germany
- Institute of Physical Chemistry University of Hamburg Hamburg Germany
| |
Collapse
|
15
|
Lertturongchai P, Ibrahim MIA, Durand A, Sunintaboon P, Ferji K. Synthesis of Thermoresponsive Copolymers with Tunable UCST‐Type Phase Transition Using Aqueous Photo‐RAFT Polymerization. Macromol Rapid Commun 2020; 41:e2000058. [DOI: 10.1002/marc.202000058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Alain Durand
- Université de Lorraine CNRS, LCPM Nancy F‐54000 France
| | - Panya Sunintaboon
- Department of ChemistryFaculty of ScienceMahidol University Bangkok 10400 Thailand
| | - Khalid Ferji
- Université de Lorraine CNRS, LCPM Nancy F‐54000 France
| |
Collapse
|
16
|
Audureau N, Coumes F, Guigner JM, Nguyen TPT, Ménager C, Stoffelbach F, Rieger J. Thermoresponsive properties of poly(acrylamide- co-acrylonitrile)-based diblock copolymers synthesized (by PISA) in water. Polym Chem 2020. [DOI: 10.1039/d0py00895h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
UCST-type poly(acrylamide-co-acrylonitrile) diblock copolymers synthesized in water (by PISA) can not only undergo reversible temperature-induced chain dissociation, but also temperature-induced morphological transition.
Collapse
Affiliation(s)
- Nicolas Audureau
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Fanny Coumes
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Jean-Michel Guigner
- Sorbonne Université
- CNRS
- UMR 7590 Institut de Minéralogie
- de Physique des Matériaux et de Cosmochimie (IMPMC)-IRD-MNHN
- F-75005 Paris
| | - Thi Phuong Thu Nguyen
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Christine Ménager
- Sorbonne Université
- CNRS
- UMR 8234
- PHENIX Laboratory
- 75252 Paris cedex 05
| | - François Stoffelbach
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Jutta Rieger
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| |
Collapse
|
17
|
Wang Y, Wang Y, Wang J, Zhao F, Xu Z, Yuan Z, Niu X, Li L, Bai S, Shi Y, Guo X. Mineralized Supramolecular Hydrogels Bearing Tunable Thermo-Responsiveness. Macromol Rapid Commun 2019; 40:e1900516. [PMID: 31692166 DOI: 10.1002/marc.201900516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2019] [Revised: 10/08/2019] [Indexed: 12/29/2022]
Abstract
Although a variety of biomimetic mineralized materials have been created in the lab, the vast majority of these manmade examples lack response to external stimuli. Here, mineralized supramolecular hydrogels with on-demand thermo-responsiveness that are formed by a simple, physical crosslinking between amorphous CaCO3 (ACC) nanoparticles and poly(acrylic acid) (PAA) are reported. Upon the addition of Na2 CO3 solution into a mixture composed of PAA and CaCl2 , amorphous ACC nanoparticles are formed in situ and simultaneously crosslinked by PAA chains, giving rise to the mineralized hydrogels. Interestingly, upon tuning the content of the formed ACC, hydrogels with different types of thermo-responsiveness can be easily obtained, and the transparencies of the resulting hydrogels are dramatically changed during the temperature-driven phase transitions. As an application, these thermo-responsive mineralized hydrogels are used to control the exposure of UV light, which is successfully applied to switch fluorescent signals in response to temperature.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Jie Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Fang Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Zhenyu Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Xiaofeng Niu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Yulin Shi
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, North Fourth Road 221, 832000, Shihezi, P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China.,Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, North Fourth Road 221, 832000, Shihezi, P. R. China
| |
Collapse
|
18
|
Papadakis CM, Müller-Buschbaum P, Laschewsky A. Switch It Inside-Out: "Schizophrenic" Behavior of All Thermoresponsive UCST-LCST Diblock Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9660-9676. [PMID: 31314540 DOI: 10.1021/acs.langmuir.9b01444] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
This feature article reviews our recent advancements on the synthesis, phase behavior, and micellar structures of diblock copolymers consisting of oppositely thermoresponsive blocks in aqueous environments. These copolymers combine a nonionic block, which shows lower critical solution temperature (LCST) behavior, with a zwitterionic block that exhibits an upper critical solution temperature (UCST). The transition temperature of the latter class of polymers is strongly controlled by its molar mass and by the salt concentration, in contrast to the rather invariant transition of nonionic polymers with type II LCST behavior such as poly(N-isopropylacrylamide) or poly(N-isopropyl methacrylamide). This allows for implementing the sequence of the UCST and LCST transitions of the polymers at will by adjusting either molecular or, alternatively, physical parameters. Depending on the location of the transition temperatures of both blocks, different switching scenarios are realized from micelles to inverse micelles, namely via the molecularly dissolved state, the aggregated state, or directly. In addition to studies of (semi)dilute aqueous solutions, highly concentrated systems have also been explored, namely water-swollen thin films. Concerning applications, we discuss the possible use of the diblock copolymers as "smart" nanocarriers.
Collapse
Affiliation(s)
- Christine M Papadakis
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany
| | - Peter Müller-Buschbaum
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany
- Heinz Maier-Leibnitz Zentrum (MLZ) , Lichtenbergstraße 1 , 85748 Garching , Germany
| | - André Laschewsky
- Institut für Chemie , Universität Potsdam , Karl-Liebknecht straße 24-25 , 14476 Potsdam-Golm , Germany
- Fraunhofer Institute for Applied Polymer Research IAP , Geiselbergstraße 69 , 14476 Potsdam-Golm , Germany
| |
Collapse
|