1
|
Kabil MF, Azzazy HMES, Nasr M. Recent progress on polySarcosine as an alternative to PEGylation: Synthesis and biomedical applications. Int J Pharm 2024; 653:123871. [PMID: 38301810 DOI: 10.1016/j.ijpharm.2024.123871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Biotherapeutic PEGylation to prolong action of medications has gained popularity over the last decades. Various hydrophilic natural polymers have been developed to tackle the drawbacks of PEGylation, such as its accelerated blood clearance and non-biodegradability. Polypeptoides, such as polysarcosine (pSar), have been explored as hydrophilic substitutes for PEG. pSar has PEG-like physicochemical characteristics such as water solubility and no reported cytotoxicity and immunogenicity. This review discusses pSar derivatives, synthesis, characterization approaches, biomedical applications, in addition to the challenges and future perspectives of pSar based biomaterials as an alternative to PEG.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
2
|
Zou H, Zhao S, Wu Q, Chu B, Zhou L. One-Pot Synthesis, Circularly Polarized Luminescence, and Controlled Self-Assembly of Janus-Type Miktoarm Star Copolymers. ACS Macro Lett 2024:227-233. [PMID: 38300520 DOI: 10.1021/acsmacrolett.3c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
With the aim of broadening the scope of Janus-type polymers with new functionalities, Janus-type miktoarm star copolymers comprising helical poly(phenyl isocyanide) (PPI) and a vinyl polymer were designed and synthesized via a combination of Pd(II)-initiated isocyanide polymerization and atom transfer radical polymerization (ATRP). A functional β-cyclodextrin bearing 7 Pd(II) complexes at one side and 14 bromine groups at the other side ((Pd(II))7-CD-(Br)14) was prepared and used as an initiator for the one-pot polymerization of phenyl isocyanide and the ATRP of vinyl monomers in a living and controlled manner. A variety of Janus-type copolymers with different structures and tunable compositions were facilely obtained by using this method. Thus, Janus-type copolymers composed of helical PPIs and tetraphenylethylene-modified vinyl polymers exhibited a significant circularly polarized luminescence performance in both soluble and aggregated states. Meanwhile, Janus-type copolymers containing PPIs and hydrophilic vinyl polymers presented amphiphilicity and self-assembled into diverse morphologies.
Collapse
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Shuyang Zhao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Qiliang Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 23200 Anhui, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| |
Collapse
|
3
|
Clapperton A, Babi J, Tran H. A Field Guide to Optimizing Peptoid Synthesis. ACS POLYMERS AU 2022; 2:417-429. [PMID: 36536890 PMCID: PMC9756346 DOI: 10.1021/acspolymersau.2c00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/19/2022]
Abstract
N-Substituted glycines (peptoids) are a class of peptidomimetic molecules used as materials for health, environmental, and drug delivery applications. Automated solid-phase synthesis is the most widely used approach for preparing polypeptoids, with a range of published protocols and modifications for selected synthetic targets. Simultaneously, emerging solution-phase syntheses are being leveraged to overcome limitations in solid-phase synthesis and access high-molecular weight polypeptoids. This Perspective aims to outline strategies for the optimization of both solid- and solution-phase synthesis, provide technical considerations for robotic synthesizers, and offer an outlook on advances in synthetic methodologies. The solid-phase synthesis sections explore steps for protocol optimization, accessing complex side chains, and adaptation to robotic synthesizers; the sections on solution-phase synthesis cover the selection of initiators, side chain compatibility, and strategies for controlling polymerization efficiency and scale. This text acts as a "field guide" for researchers aiming to leverage the flexibility and adaptability of peptoids in their research.
Collapse
Affiliation(s)
- Abigail
Mae Clapperton
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Jon Babi
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Helen Tran
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada,Department
of Chemical Engineering, University of Toronto, 200 College St, Toronto, Toronto, ON M5S
3E5, Canada,
| |
Collapse
|
4
|
Qiu H, Shen T, Yang Z, Wu F, Li X, Tu Y, Ling J. Janus Polymerization: A
One‐Shot
Approach towards Amphiphilic Multiblock Poly(ester‐acetal)s Directly from 1,
3‐Dioxolane
with
ε
‐Caprolactone. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huan Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Ting Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Zhening Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Feng Wu
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| | - Xiaohong Li
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| | - Yingfeng Tu
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
5
|
Kim KH, Nam J, Choi J, Seo M, Bang J. From macromonomers to bottlebrush copolymers with sequence control: synthesis, properties, and applications. Polym Chem 2022. [DOI: 10.1039/d2py00126h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers (BBPs) are a type of comb-like macromolecules with densely grafted polymeric sidechains attached to the polymer backbones, and many intriguing properties and applications have been demonstrated due to...
Collapse
|
6
|
|
7
|
Teulère C, Ben-Osman C, Barry C, Nicolaÿ R. Synthesis and self-assembly of amphiphilic heterografted molecular brushes prepared by telomerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Chen K, Hu X, Zhu N, Guo K. Design, Synthesis, and Self-Assembly of Janus Bottlebrush Polymers. Macromol Rapid Commun 2020; 41:e2000357. [PMID: 32844547 DOI: 10.1002/marc.202000357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/02/2020] [Indexed: 12/12/2022]
Abstract
Janus bottlebrush polymers are a class of special molecular brushes, which have two immiscible side chains on the repeating unit of the backbone. The characteristic architectures of Janus bottlebrush polymers enable unique self-assembly properties and broad applications. Recently, remarkable advances of Janus bottlebrush polymers have been achieved for polymer chemistry and material science. This review summarizes the synthetic strategies of Janus bottlebrush polymers, and highlights the self-assembly applications. Finally, the challenges and opportunities are proposed for the further development.
Collapse
Affiliation(s)
- Kerui Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,College of Materials Science and Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| |
Collapse
|
9
|
Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101278] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Santos WG, Budkina DS, Santagneli SH, Tarnovsky AN, Zukerman-Schpector J, Ribeiro SJL. Ion-Pair Complexes of Pyrylium and Tetraarylborate as New Host-Guest Dyes: Photoinduced Electron Transfer Promoting Radical Polymerization. J Phys Chem A 2019; 123:7374-7383. [PMID: 31386369 DOI: 10.1021/acs.jpca.9b03581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultrafast transient absorption spectroscopy, NOESY-NMR, and EPR spectroscopy shed light on how π-π stacking interactions combined with electrostatic interactions can be used to form stable ion-pair complexes between pyrylium and tetraarylborate ions in which the interaction of the π-delocalized clouds promotes the observation of new radiative processes and also electron transfer processes excitation using visible light. The results exhibit a striking combination of properties, chemical stability and photophysical and photochemical events, that make these ion-pair complexes as a step toward the realization of chromophore/luminescent materials and also their use as a new monophotoinitiator system in radical polymerization reactions.
Collapse
Affiliation(s)
- Willy G Santos
- Institute of Chemistry , São Paulo State University - UNESP , CP 355, Araraquara , SP 14801-970 , Brazil.,Department of Chemistry , Federal University of São Carlos , UFSCar, CP 676, São Carlos , SP 13565-905 , Brazil
| | - Darya S Budkina
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Silvia H Santagneli
- Institute of Chemistry , São Paulo State University - UNESP , CP 355, Araraquara , SP 14801-970 , Brazil
| | - Alexander N Tarnovsky
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Julio Zukerman-Schpector
- Department of Chemistry , Federal University of São Carlos , UFSCar, CP 676, São Carlos , SP 13565-905 , Brazil
| | - Sidney J L Ribeiro
- Institute of Chemistry , São Paulo State University - UNESP , CP 355, Araraquara , SP 14801-970 , Brazil
| |
Collapse
|