1
|
Akimoto AM, Ohta Y, Koizumi Y, Ishii T, Endo M, Enomoto T, Nishimoto T, Yoshida R. A surface-grafted hydrogel demonstrating thermoresponsive adhesive strength change. SOFT MATTER 2023; 19:3249-3252. [PMID: 37099019 DOI: 10.1039/d3sm00397c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Here, we designed a surface-grafted hydrogel (SG gel) that exhibits thermoresponsive changes in surface properties. Quantitative measurements using a self-made device showed that the adhesive strength between the SG gel surface and a Bakelite plate due to hydrophobic interaction changed significantly with temperature.
Collapse
Affiliation(s)
- Aya M Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yuji Ohta
- Faculty of Core Research Natural Science Division, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yuki Koizumi
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Taichi Ishii
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Masaru Endo
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Taihei Nishimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
2
|
Sha Y, Zhao C, Zhuang W, Chen J, Liu D, Chen Y, Ge L, Wu J, Zhu C, Liu J, Ying H. Reversible Adsorption and Detachment of Saccharomyces cerevisiae on Thermoresponsive Poly( N-isopropylacrylamide)-Grafted Fibers for Continuous Immobilized Fermentation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15827-15838. [PMID: 36484487 DOI: 10.1021/acs.langmuir.2c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biofilm-mediated continuous fermentation with cells immobilized has gained much attention in recent years. In this study, thermoresponsive poly(N-isopropylacrylamide)-grafted cotton fibers (PNIPAM-CF) were prepared via an improved surface-initiated atom transfer radical polymerization. The modification process imparted switchable wettability to the surface while maintaining the thermal stability and biocompatibility of the CF. During the ethanol transformation, the rapid, reversible cell adsorption and detachment of Saccharomyces cerevisiae were performed through the modulation of wettability, displaying the enhancement of immobilized biomass and immobilization efficiency from 2.20 g/L and 59.43% to 2.81 g/L and 93.32%, respectively. Moreover, the biofilm adsorption matched well with the Freundlich model, indicating that multilayer adhesion was the main mode of biofilm formation. Based on the accumulation of the biofilm, the fabrication and utilization of PNIPAM-CF improved the efficiency of continuous immobilized fermentation, making the ethanol production reach 26.34 g/L in the sixth batch of fermentation. Meanwhile, wettability regulation further enhanced the reusability of the carrier. Therefore, the findings of this study revealed that the application of smart materials in cell immobilization systems had broad prospects for achieving sustainable and continuous catalysis.
Collapse
Affiliation(s)
- Yu Sha
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
| | - Chenchen Zhao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
| | - Jiale Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
| | - Yong Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
| | - Lei Ge
- Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD4300, Australia
| | - Jinglan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
| | - Jinle Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou450001, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing211816, China
| |
Collapse
|
4
|
Lizana-Vasquez GD, Arrieta-Viana LF, Mendez-Vega J, Acevedo A, Torres-Lugo M. Synthetic Thermo-Responsive Terpolymers as Tunable Scaffolds for Cell Culture Applications. Polymers (Basel) 2022; 14:polym14204379. [PMID: 36297960 PMCID: PMC9611013 DOI: 10.3390/polym14204379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tailored synthetic hydrogels for in vitro tissue culture and biomanufacturing provides the advantage of mimicking the cell microenvironment without issues of batch-to-batch variability. To that end, this work focused on the design, characterization, and preliminary evaluation of thermo-responsive, transparent synthetic terpolymers based on N-isopropylacrylamide, vinylphenylboronic acid, and polyethylene glycol for cell manufacturing and in vitro culture applications. Polymer physical properties were characterized by FT-IR, 1H-NMR, DLS, rheology, and thermal-gravimetric analysis. Tested combinations provided polymers with a lower critical solution temperature (LCST) between 30 and 45 °C. Terpolymer elastic/shear modulus varied between 0.3 and 19.1 kPa at 37 °C. Cellular characterization indicated low cell cytotoxicity on NIH-3T3. Experiments with the ovarian cancer model SKOV-3 and Jurkat T cells showed the terpolymers’ capacity for cell encapsulation without interfering with staining or imaging protocols. In addition, cell growth and high levels of pluripotency demonstrated the capability of terpolymer to culture iPSCs. Characterization results confirmed a promising use of terpolymers as a tunable scaffold for cell culture applications.
Collapse
|
6
|
Wang J, Guo M. Thermo-responsive, Mechanically-robust and 3D Printable Supramolecular Hydrogels. Polym Chem 2022. [DOI: 10.1039/d2py00127f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, poly(N-isopropylacrylamide) (PNIPAm) grafted and multi-urea linkage segmented linear polyurethane-urea (PUU) copolymers were synthesized using α-dihydroxyl terminated PNIPAm as chain extender and water as an indirect chain extender,respectively....
Collapse
|
7
|
Nagase K. Thermoresponsive interfaces obtained using poly(N-isopropylacrylamide)-based copolymer for bioseparation and tissue engineering applications. Adv Colloid Interface Sci 2021; 295:102487. [PMID: 34314989 DOI: 10.1016/j.cis.2021.102487] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) is the most well-known and widely used stimuli-responsive polymer in the biomedical field owing to its ability to undergo temperature-dependent hydration and dehydration with temperature variations, causing hydrophilic and hydrophobic alterations. This temperature-dependent property of PNIPAAm provides functionality to interfaces containing PNIPAAm. Notably, the hydrophilic and hydrophobic alterations caused by the change in the temperature-responsive property of PNIPAAm-modified interfaces induce temperature-modulated interactions with biomolecules, proteins, and cells. This intrinsic property of PNIPAAm can be effectively used in various biomedical applications, particularly in bioseparation and tissue engineering applications, owing to the functionality of PNIPAAm-modified interfaces based on the temperature modulation of the interaction between PNIPAAm-modified interfaces and biomolecules and cells. This review focuses on PNIPAAm-modified interfaces in terms of preparation method, properties, and their applications. Advances in PNIPAAm-modified interfaces for existing and developing applications are also summarized.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| |
Collapse
|
9
|
Nagase K, Ota A, Hirotani T, Yamada S, Akimoto AM, Kanazawa H. Thermoresponsive Cationic Block Copolymer Brushes for Temperature‐Modulated Stem Cell Separation. Macromol Rapid Commun 2020; 41:e2000308. [DOI: 10.1002/marc.202000308] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy Keio University 1‐5‐30 Shibakoen, Minato Tokyo 105‐8512 Japan
| | - Ayumu Ota
- Faculty of Pharmacy Keio University 1‐5‐30 Shibakoen, Minato Tokyo 105‐8512 Japan
| | - Tadashi Hirotani
- Faculty of Pharmacy Keio University 1‐5‐30 Shibakoen, Minato Tokyo 105‐8512 Japan
| | - Sota Yamada
- Faculty of Pharmacy Keio University 1‐5‐30 Shibakoen, Minato Tokyo 105‐8512 Japan
| | - Aya Mizutani Akimoto
- Department of Materials Engineering Schools of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo Tokyo 113‐8656 Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy Keio University 1‐5‐30 Shibakoen, Minato Tokyo 105‐8512 Japan
| |
Collapse
|