1
|
Paul AA, Aladese AD, Marks RS. Additive Manufacturing Applications in Biosensors Technologies. BIOSENSORS 2024; 14:60. [PMID: 38391979 PMCID: PMC10887193 DOI: 10.3390/bios14020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
Three-dimensional (3D) printing technology, also known as additive manufacturing (AM), has emerged as an attractive state-of-the-art tool for precisely fabricating functional materials with complex geometries, championing several advancements in tissue engineering, regenerative medicine, and therapeutics. However, this technology has an untapped potential for biotechnological applications, such as sensor and biosensor development. By exploring these avenues, the scope of 3D printing technology can be expanded and pave the way for groundbreaking innovations in the biotechnology field. Indeed, new printing materials and printers would offer new possibilities for seamlessly incorporating biological functionalities within the growing 3D scaffolds. Herein, we review the additive manufacturing applications in biosensor technologies with a particular emphasis on extrusion-based 3D printing modalities. We highlight the application of natural, synthetic, and composite biomaterials as 3D-printed soft hydrogels. Emphasis is placed on the approach by which the sensing molecules are introduced during the fabrication process. Finally, future perspectives are provided.
Collapse
Affiliation(s)
- Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel;
| | - Adedamola D. Aladese
- Department of Physics and Material Science, University of Memphis, Memphis, TN 38152, USA;
| | - Robert S. Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel;
- Ilse Katz Centre for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
2
|
Wei J, Zhang B, Zhang P, Wei H, Yu Y. Bifunctional Phenol-enabled Sequential Polymerization Strategy for Printable Tough Hydrogels. Macromol Rapid Commun 2022; 43:e2200419. [PMID: 35748664 DOI: 10.1002/marc.202200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Indexed: 11/08/2022]
Abstract
Hydrogels are promising material candidates in engineering soft robotics, mechanical sensors, biomimetic regenerative medicine, etc. However, developing multinetwork hydrogels with high mechanical properties and excellent printability is still challenging. Here, we report a bifunctional phenol-enabled sequential polymerization (BPSP) strategy to fabricate high-performance multinetwork hydrogels under the orthogonal catalysis of efficient ruthenium photochemistry. Benefiting from this bifunctional design, phenols can sequentially polymerize with typical monomers and themselves to fabricate various phenol-containing polymers (Ph-Ps) and Ph-Ps-based multinetwork tough hydrogels, respectively. The as-prepared hydrogels have maximum stress of 0.75 MPa and toughness of 2.2 MJ/m3 under the critical strain of 800%. These property parameters are a maximum of 16 times higher than that of the phenol-postmodified and phenol-free hydrogels. Moreover, the rapid coupling polymerization of phenols can shorten the gelation times of hydrogels to as low as ∼4 s, which enables its printable property for customizable applications. As a proof of concept, a 3D scaffold-like structure is optimized as highly sensitive mechanical sensors for detecting various human motions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiayi Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Hongqiu Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
3
|
Imani KBC, Jo A, Choi GM, Kim B, Chung JW, Lee HS, Yoon J. High-Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermo-Responsive Poloxamer Ink Platform. Macromol Rapid Commun 2021; 43:e2100579. [PMID: 34708464 DOI: 10.1002/marc.202100579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/27/2021] [Indexed: 12/12/2022]
Abstract
High-resolution 3D-printable hydrogels with high mechanical strength and biocompatibility are in great demand because of their potential applications in numerous fields. In this study, a material system comprising Pluronic F-127 dimethacrylate (FDMA) is developed to function as a direct ink writing (DIW) hydrogel for 3D printing. FDMA is a triblock copolymer that transforms into micelles at elevated temperatures. The transformation increases the viscosity of FDMA and preserves its structure during DIW 3D printing, whereupon the printed structure is solidified through photopolymerization. Because of this viscosity shift, various functionalities can be incorporated through the addition of other materials in the solution state. Acrylic acid is incorporated into the pregel solution to enhance the mechanical strength, because the carboxylate group of poly(acrylic acid) ionically crosslinks with Fe3+ , increasing the toughness of the DIW hydrogel 37 times to 2.46 MJ m-3 . Tough conductive hydrogels are also 3D printed by homogenizing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate into the pregel solution. Furthermore, the FDMA platform developed herein uses DIW, which facilitates multicartridges 3D printing, and because all the materials included are biocompatible, the platform may be used to fabricate complex structures for biological applications.
Collapse
Affiliation(s)
- Kusuma Betha Cahaya Imani
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research center, Pusan National University, Busan, 46241, Republic of Korea
| | - Ara Jo
- Department of Biomedical Science, Dong-A University, 37 Nakdong-Daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Gyeong Min Choi
- Department of Chemical Engineering, Dong-A University, 37 Nakdong-Daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Beogyeong Kim
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research center, Pusan National University, Busan, 46241, Republic of Korea
| | - Jin-Woong Chung
- Department of Biomedical Science, Dong-A University, 37 Nakdong-Daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Heon Sang Lee
- Department of Chemical Engineering, Dong-A University, 37 Nakdong-Daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jinhwan Yoon
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research center, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|