1
|
Foli G, Capelli F, Grande M, Tagliabue S, Gherardi M, Minelli M. Optimization of Laminated Bio-Polymer Fabrication for Food Packaging Application: A Sustainable Plasma-Activated Approach. Polymers (Basel) 2024; 16:1851. [PMID: 39000706 PMCID: PMC11244328 DOI: 10.3390/polym16131851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
The current level of packaging consumption imposes a need to fabricate single-use food packaging with renewable and compostable materials, such as bio-polyesters (e.g., polylactic acid, PLA and polybutylene succinate, PBS) or cellulose, but their use is still problematic. Fabrication of bio-compostable composites can specifically address impeding challenges, and adhesive lamination, achieved with compostable glue, is becoming more and more popular with respect to the less versatile hot lamination. In this context, plasma activation, a chemical-free oxidation technique of a material's surface, is used to increase the affinity of three different biomaterials (cellulose, PLA and PBS) toward a compostable polyurethane adhesive to decrease its amount by gluing bio-polyesters to cellulose. Optical Microscopy reveals activation conditions that do not affect the integrity of the materials, while Water Contact Analyses confirm the activation of the surfaces, with contact angles decreased to roughly 50 deg in all cases. Unexpectedly, ζ-potential analyses and subtractive infrared spectroscopy highlight how the activation performed superficially etches cellulose, while for both PLA and PBS, a general decrease in surface potential and an increase in superficial hydroxyl group populations confirm the achievement of the desired oxidation. Thus, we rationalize continuous activation conditions to treat PLA and PBS and to glue them to neat cellulose. While no beneficial effect is observed with activated PLA, bi-laminate composites fabricated with activated PBS fulfill the benchmark for adhesion strength using less than before, while oxygen permeation analyses exclude plasma-induced etching even at a nanoscale.
Collapse
Affiliation(s)
- Giacomo Foli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Umberto Terracini, 28, 40131 Bologna, Italy
| | - Filippo Capelli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | - Mariachiara Grande
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | | | - Matteo Gherardi
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | - Matteo Minelli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Umberto Terracini, 28, 40131 Bologna, Italy
| |
Collapse
|
2
|
Talekar S, Barrow CJ, Nguyen HC, Zolfagharian A, Zare S, Farjana SH, Macreadie PI, Ashraf M, Trevathan-Tackett SM. Using waste biomass to produce 3D-printed artificial biodegradable structures for coastal ecosystem restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171728. [PMID: 38492597 DOI: 10.1016/j.scitotenv.2024.171728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
The loss of ecosystem functions and services caused by rapidly declining coastal marine ecosystems, including corals and bivalve reefs and wetlands, around the world has sparked significant interest in interdisciplinary methods to restore these ecologically and socially important ecosystems. In recent years, 3D-printed artificial biodegradable structures that mimic natural life stages or habitat have emerged as a promising method for coastal marine restoration. The effectiveness of this method relies on the availability of low-cost biodegradable printing polymers and the development of 3D-printed biomimetic structures that efficiently support the growth of plant and sessile animal species without harming the surrounding ecosystem. In this context, we present the potential and pathway for utilizing low-cost biodegradable biopolymers from waste biomass as printing materials to fabricate 3D-printed biodegradable artificial structures for restoring coastal marine ecosystems. Various waste biomass sources can be used to produce inexpensive biopolymers, particularly those with the higher mechanical rigidity required for 3D-printed artificial structures intended to restore marine ecosystems. Advancements in 3D printing methods, as well as biopolymer modifications and blending to address challenges like biopolymer solubility, rheology, chemical composition, crystallinity, plasticity, and heat stability, have enabled the fabrication of robust structures. The ability of 3D-printed structures to support species colonization and protection was found to be greatly influenced by their biopolymer type, surface topography, structure design, and complexity. Considering limited studies on biodegradability and the effect of biodegradation products on marine ecosystems, we highlight the need for investigating the biodegradability of biopolymers in marine conditions as well as the ecotoxicity of the degraded products. Finally, we present the challenges, considerations, and future perspectives for designing tunable biomimetic 3D-printed artificial biodegradable structures from waste biomass biopolymers for large-scale coastal marine restoration.
Collapse
Affiliation(s)
- Sachin Talekar
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia; ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Colin J Barrow
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia; ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Hoang Chinh Nguyen
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Shahab Zare
- School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | - Peter I Macreadie
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Mahmud Ashraf
- School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Stacey M Trevathan-Tackett
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
3
|
Park H, He H, Yan X, Liu X, Scrutton NS, Chen GQ. PHA is not just a bioplastic! Biotechnol Adv 2024; 71:108320. [PMID: 38272380 DOI: 10.1016/j.biotechadv.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Polyhydroxyalkanoates (PHA) have evolved into versatile biopolymers, transcending their origins as mere bioplastics. This extensive review delves into the multifaceted landscape of PHA applications, shedding light on the diverse industries that have harnessed their potential. PHA has proven to be an invaluable eco-conscious option for packaging materials, finding use in films foams, paper coatings and even straws. In the textile industry, PHA offers a sustainable alternative, while its application as a carbon source for denitrification in wastewater treatment showcases its versatility in environmental remediation. In addition, PHA has made notable contributions to the medical and consumer sectors, with various roles ranging from 3D printing, tissue engineering implants, and cell growth matrices to drug delivery carriers, and cosmetic products. Through metabolic engineering efforts, PHA can be fine-tuned to align with the specific requirements of each industry, enabling the customization of material properties such as ductility, elasticity, thermal conductivity, and transparency. To unleash PHA's full potential, bridging the gap between research and commercial viability is paramount. Successful PHA production scale-up hinges on establishing direct supply chains to specific application domains, including packaging, food and beverage materials, medical devices, and agriculture. This review underscores that PHA's future rests on ongoing exploration across these industries and more, paving the way for PHA to supplant conventional plastics and foster a circular economy.
Collapse
Affiliation(s)
- Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Ferri M, Chiromito EMS, de Carvalho AJF, Morselli D, Degli Esposti M, Fabbri P. Fine Tuning of the Mechanical Properties of Bio-Based PHB/Nanofibrillated Cellulose Biocomposites to Prevent Implant Failure Due to the Bone/Implant Stress Shielding Effect. Polymers (Basel) 2023; 15:polym15061438. [PMID: 36987218 PMCID: PMC10051535 DOI: 10.3390/polym15061438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
A significant mechanical properties mismatch between natural bone and the material forming the orthopedic implant device can lead to its failure due to the inhomogeneous loads distribution, resulting in less dense and more fragile bone tissue (known as the stress shielding effect). The addition of nanofibrillated cellulose (NFC) to biocompatible and bioresorbable poly(3-hydroxybutyrate) (PHB) is proposed in order to tailor the PHB mechanical properties to different bone types. Specifically, the proposed approach offers an effective strategy to develop a supporting material, suitable for bone tissue regeneration, where stiffness, mechanical strength, hardness, and impact resistance can be tuned. The desired homogeneous blend formation and fine-tuning of PHB mechanical properties have been achieved thanks to the specific design and synthesis of a PHB/PEG diblock copolymer that is able to compatibilize the two compounds. Moreover, the typical high hydrophobicity of PHB is significantly reduced when NFC is added in presence of the developed diblock copolymer, thus creating a potential cue for supporting bone tissue growth. Hence, the presented outcomes contribute to the medical community development by translating the research results into clinical practice for designing bio-based materials for prosthetic devices.
Collapse
Affiliation(s)
- Martina Ferri
- Department of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Emanoele Maria Santos Chiromito
- Department of Materials Engineering, Engineering School of São Carlos, University of São Paulo, Av. João Dagnone, 1100, São Carlos 13563-120, SP, Brazil
| | - Antonio Jose Felix de Carvalho
- Department of Materials Engineering, Engineering School of São Carlos, University of São Paulo, Av. João Dagnone, 1100, São Carlos 13563-120, SP, Brazil
| | - Davide Morselli
- Department of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
- Correspondence: (M.D.E.); (P.F.); Tel.: +39-051-2090363 (M.D.E.); +39-051-2090364 (P.F.)
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
- Correspondence: (M.D.E.); (P.F.); Tel.: +39-051-2090363 (M.D.E.); +39-051-2090364 (P.F.)
| |
Collapse
|
5
|
Kolitha BS, Jayasekara SK, Tannenbaum R, Jasiuk IM, Jayakody LN. Repurposing of waste PET by microbial biotransformation to functionalized materials for additive manufacturing. J Ind Microbiol Biotechnol 2023; 50:kuad010. [PMID: 37248049 PMCID: PMC10549213 DOI: 10.1093/jimb/kuad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Plastic waste is an outstanding environmental thread. Poly(ethylene terephthalate) (PET) is one of the most abundantly produced single-use plastics worldwide, but its recycling rates are low. In parallel, additive manufacturing is a rapidly evolving technology with wide-ranging applications. Thus, there is a need for a broad spectrum of polymers to meet the demands of this growing industry and address post-use waste materials. This perspective article highlights the potential of designing microbial cell factories to upcycle PET into functionalized chemical building blocks for additive manufacturing. We present the leveraging of PET hydrolyzing enzymes and rewiring the bacterial C2 and aromatic catabolic pathways to obtain high-value chemicals and polymers. Since PET mechanical recycling back to original materials is cost-prohibitive, the biochemical technology is a viable alternative to upcycle PET into novel 3D printing materials, such as replacements for acrylonitrile butadiene styrene. The presented hybrid chemo-bio approaches potentially enable the manufacturing of environmentally friendly degradable or higher-value high-performance polymers and composites and their reuse for a circular economy. ONE-SENTENCE SUMMARY Biotransformation of waste PET to high-value platform chemicals for additive manufacturing.
Collapse
Affiliation(s)
- Bhagya S Kolitha
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Sandhya K Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, the Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Iwona M Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
6
|
Mehrpouya M, Vahabi H, Barletta M, Laheurte P, Langlois V. Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: Materials, printing techniques, and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112216. [PMID: 34225868 DOI: 10.1016/j.msec.2021.112216] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Additive manufacturing (AM) is recently imposing as a fast, reliable, and highly flexible solution to process various materials, that range from metals to polymers, to achieve a broad variety of customized end-goods without involving the injection molding process. The employment of biomaterials is of utmost relevance as the environmental footprint of the process and, consequently, of the end-goods is significantly decreased. Additive manufacturing can provide, in particular, an all-in-one platform to fabricate complex-shaped biobased items such as bone implants or biomedical devices, that would be, otherwise, extremely troublesome and costly to achieve. Polyhydroxyalkanoates (PHAs) is an emerging class of biobased and biodegradable polymeric materials achievable by fermentation from bacteria. There are some promising scientific and technical reports on the manufacturing of several commodities in PHAs by additive manufacturing. However, many challenges must still be faced in order to expand further the use of PHAs. In this framework, the present work reviews and classifies the relevant papers focused on the design and development of PHAs for different 3D printing techniques and overviews the most recent applications of this approach.
Collapse
Affiliation(s)
- Mehrshad Mehrpouya
- Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Massimiliano Barletta
- Universit'a degli Studi Roma Tre, Dipartimento di Ingegneria, Via Vito Volterra 62, 00146 Roma, Italy
| | - Pascal Laheurte
- Université de Lorraine, Laboratoire LEM3 UMR 7239, Metz F-57045, France
| | - Valérie Langlois
- Univ Paris Est Créteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
7
|
Merckle D, Constant E, Cartwright Z, Weems AC. Ring Opening Copolymerization of Four-Dimensional Printed Shape Memory Polyester Photopolymers Using Digital Light Processing. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Merckle
- Translational Biosciences Program, Ohio University, Athens, Ohio 45701, United States
| | - Eric Constant
- Biomedical Engineering Program, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Zachary Cartwright
- Department of Mechanical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Andrew C Weems
- Translational Biosciences Program, Ohio University, Athens, Ohio 45701, United States
- Biomedical Engineering Program, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
- Department of Mechanical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
- Ohio Musculoskeletal and Neurological Institute, Health College of Medicine, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
8
|
Sustainable Materials and their Contribution to the Sustainable Development Goals (SDGs): A Critical Review Based on an Italian Example. Molecules 2021; 26:molecules26051407. [PMID: 33807763 PMCID: PMC7961538 DOI: 10.3390/molecules26051407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
The Sustainable Development Goals (SDGs) have been proposed to give a possible future to humankind. Due to the multidimensional characteristic of sustainability, SDGs need research activities with a multidisciplinary approach. This work aims to provide a critical review of the results concerning sustainable materials obtained by Italian researchers affiliated to the National Interuniversity Consortium of Materials Science and Technology (INSTM) and their contribution to reaching specific indicators of the 17 SDGs. Data were exposed by using the Web of Science (WoS) database. In the investigated period (from 2016 to 2020), 333 works about sustainable materials are found and grouped in one of the following categories: chemicals (33%), composites (11%), novel materials for pollutants sequestration (8%), bio-based and food-based materials (10%), materials for green building (8%), and materials for energy (29%). This review contributes to increasing the awareness of several of the issues concerning sustainable materials but also to encouraging the researchers to focus on SDGs’ interconnections. Indeed, the mapping of the achievements can be relevant to the decision-makers to identify the opportunities that materials can offer to achieve the final goals. In this frame, a “Sustainable Materials Partnership for SDGs” is envisaged for more suitable resource management in the future.
Collapse
|
9
|
Abstract
Abstract
In the 21st century, additive manufacturing technologies have gained in popularity mainly due to benefits such as rapid prototyping, faster small production runs, flexibility and space for innovations, non-complexity of the process and broad affordability. In order to meet diverse requirements that 3D models have to meet, it is necessary to develop new 3D printing technologies as well as processed materials. This review is focused on 3D printing technologies applicable for polyhydroxyalkanoates (PHAs). PHAs are thermoplastics regarded as a green alternative to petrochemical polymers. The 3D printing technologies presented as available for PHAs are selective laser sintering and fused deposition modeling. Stereolithography can also be applied provided that the molecular weight and functional end groups of the PHA are adjusted for photopolymerization. The chemical and physical properties primarily influence the processing of PHAs by 3D printing technologies. The intensive research for the fabrication of 3D objects based on PHA has been applied to fulfil criteria of rapid and customized prototyping mainly in the medical area.
Collapse
|