1
|
Oumerri J, Qayouh H, Arteni AA, Six JL, Lahcini M, Ferji K. One-pot Formulation of Cationic Oligochitosan Coated Nanoparticles via Photo- Polymerization Induced Self-Assembly. Chemphyschem 2024; 25:e202400291. [PMID: 38646967 DOI: 10.1002/cphc.202400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
During last few decades, oligochitosan (OCS)-coated nanoparticles have received great interest for nanomedicine, food and environment applications. However, their current formulation techniques are time-consuming with multi-synthesis/purification steps and sometimes require the use of organic solvents, crosslinkers and surfactants. Herein, we report a facile and rapid one-pot synthesis of OCS-based nanoparticles using photo-initiated reversible addition fragmentation chain transfer polymerization-induced self-assembly (Photo-RAFT PISA) under UV-irradiation at room temperature. To achieve this, OCS was first functionalized by a chain transfer agent (CTA) resulting in a macromolecular chain transfer agent (OCS-CTA), which will act as a reactive electrostatic/steric stabilizer. Owing to its UV-sensitivity, OCS-CTA was then used as photo-iniferter to initiate the polymerization of 2-hydroxypropyl methacrylate (HPMA) in aqueous acidic buffer, resulting in OCS-g-PHPMA amphiphilic grafted copolymers which self-assemble into nano-objects. Transmission electron microscopy and light scattering analysis reveal formation of spherical nanostructures.
Collapse
Affiliation(s)
- Jihad Oumerri
- Laboratoire de chimie physique macromoleculaire (LCPM), Université de Lorraine, CNRS, 1 rue Grandville, F-54000, NANCY, France
- LCO2MC, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, 40000, Marrakech, Morocco
| | - Hicham Qayouh
- LCO2MC, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, 40000, Marrakech, Morocco
| | - Ana Andreea Arteni
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Av. de la Terrasse Bâtiment 21, 91198, Gif-sur-Yvette, France
| | - Jean-Luc Six
- Laboratoire de chimie physique macromoleculaire (LCPM), Université de Lorraine, CNRS, 1 rue Grandville, F-54000, NANCY, France
| | - Mohammed Lahcini
- LCO2MC, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, 40000, Marrakech, Morocco
- Mohammed VI Polytechnic University (UM6P), Lot 660, ISSB-P, 43150, Benguerir, Morocco
| | - Khalid Ferji
- Laboratoire de chimie physique macromoleculaire (LCPM), Université de Lorraine, CNRS, 1 rue Grandville, F-54000, NANCY, France
| |
Collapse
|
2
|
Nan Y, Zhao C, Beaudoin G, Zhu XX. Synergistic Approaches in the Design and Applications of UCST Polymers. Macromol Rapid Commun 2023; 44:e2300261. [PMID: 37477638 DOI: 10.1002/marc.202300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli-responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications.
Collapse
Affiliation(s)
- Yi Nan
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Guillaume Beaudoin
- Département de Chimie, Université de Montréal, C.P. 6128, Succ, Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - X X Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succ, Centre-ville, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
3
|
Ikkene D, Six JL, Ferji K. Progress in Aqueous Dispersion RAFT PISA. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Audureau N, Coumes F, Guigner JM, Guibert C, Stoffelbach F, Rieger J. Dual Thermo- and pH-Responsive N-Cyanomethylacrylamide-Based Nano-Objects Prepared by RAFT-Mediated Aqueous Polymerization-Induced Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolas Audureau
- Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Fanny Coumes
- Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Jean-Michel Guigner
- Sorbonne Université & CNRS, UMR 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)-IRD-MNHN, 75252 Paris Cedex 05, France
| | - Clément Guibert
- Sorbonne Université & CNRS, UMR 7197, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - François Stoffelbach
- Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Jutta Rieger
- Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
5
|
Wei T, Ran T, Zhao W, Dai B. A Flocculation–Adsorption Self-Coupled System for Wastewater Treatment with the Aim of Water Reuse. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Tingting Wei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi832003, China
| | - Tingmin Ran
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi832003, China
| | - Wei Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi832003, China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi832003, China
| |
Collapse
|
6
|
The unusual rheological behaviors of poly(acrylamide-co-acrylonitrile)s with UCST features in aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Sun J, Lu J, Li C, Tian Y, Liu K, Liu L, Zhao C, Zhang M. Design of a UCST Polymer with Strong Hydrogen Bonds and Reactive Moieties for Facile Polymer-Protein Hybridization. Biomacromolecules 2022; 23:1291-1301. [PMID: 35049291 DOI: 10.1021/acs.biomac.1c01520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer-protein hybrids have been extensively used in biomedical fields. Polymers with upper critical solution temperature (UCST) behaviors can form a hydrated coacervate phase below the cloud point (Tcp), providing themselves the opportunity to directly capture hydrophilic proteins and form hybrids in aqueous solutions. However, it is always a challenge to obtain a UCST polymer that could aggregate at a high temperature at a relatively low concentration and also efficiently bind with proteins. In this work, a UCST polymer reactive with proteins was designed, and its temperature responsiveness and protein-capture ability were investigated in detail. The polymer was synthesized by the reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylamide (AAm) and N-acryloxysuccinimide (NAS). Interestingly, taking advantage of the partial hydrolysis of NAS into acrylic acid (AAc), the obtained P(AAm-co-NAS-co-AAc) polymer exhibited an excellent UCST behavior and possessed good protein-capture ability. It showed a relatively higher Tcp (81 °C) at a lower concentration (0.1 wt %) and quickly formed polymer-protein hybrids with high protein loading and without losing protein bioactivity, and both the polymer and polymer-protein nanoparticles showed good cytocompatibility. All the findings are attributed to the unique structure of the polymer, which provided not only the strong and stable hydrogen bonds but also the quick and mild reactivity. The work offers an easy and mild strategy for polymer-protein hybridization directly in aqueous solutions, which may find applications in biomedical fields.
Collapse
Affiliation(s)
- Jialin Sun
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Jianlei Lu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yueyi Tian
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Kang Liu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Lingrong Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
8
|
Audureau N, Coumes F, Rieger J, Stoffelbach F. Poly(N-cyanoethylacrylamide), a new thermoresponsive homopolymer presenting both LCST and UCST behavior in water. Polym Chem 2022. [DOI: 10.1039/d2py00032f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have recently demonstrated that poly(N-cyanomethylacrylamide) (PCMAm) synthesized by reversible addition-fragmentation chain transfer (RAFT) radical polymerization exhibits a typical upper critical solution temperature (UCST)-type transition in water with a very...
Collapse
|
9
|
Audureau N, Coumes F, Veith C, Guibert C, Guigner JM, Stoffelbach F, Rieger J. Synthesis and Characterization of Temperature-Responsive N-Cyanomethylacrylamide-Containing Diblock Copolymer Assemblies in Water. Polymers (Basel) 2021; 13:4424. [PMID: 34960975 PMCID: PMC8707179 DOI: 10.3390/polym13244424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 01/31/2023] Open
Abstract
We have previously demonstrated that poly(N-cyanomethylacrylamide) (PCMAm) exhibits a typical upper-critical solution temperature (UCST)-type transition, as long as the molar mass of the polymer is limited, which was made possible through the use of reversible addition-fragmentation chain transfer (RAFT) radical polymerization. In this research article, we use for the first time N-cyanomethylacrylamide (CMAm) in a typical aqueous dispersion polymerization conducted in the presence of poly(N,N-dimethylacrylamide) (PDMAm) macroRAFT agents. After assessing that well-defined PDMAm-b-PCMAm diblock copolymers were formed through this aqueous synthesis pathway, we characterized in depth the colloidal stability, morphology and temperature-responsiveness of the dispersions, notably using cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and turbidimetry. The combined analyses revealed that stable nanometric spheres, worms and vesicles could be prepared when the PDMAm block was sufficiently long. Concerning the thermoresponsiveness, only diblocks with a PCMAm block of a low degree of polymerization (DPn,PCMAm < 100) exhibited a UCST-type dissolution upon heating at low concentration. In contrast, for higher DPn,PCMAm, the diblock copolymer nano-objects did not disassemble. At sufficiently high temperatures, they rather exhibited a temperature-induced secondary aggregation of primary particles. In summary, we demonstrated that various morphologies of nano-objects could be obtained via a typical polymerization-induced self-assembly (PISA) process using PCMAm as the hydrophobic block. We believe that the development of this aqueous synthesis pathway of novel PCMAm-based thermoresponsive polymers will pave the way towards various applications, notably as thermoresponsive coatings and in the biomedical field.
Collapse
Affiliation(s)
- Nicolas Audureau
- Polymer Chemistry Team, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université & CNRS, UMR 8232, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (N.A.); (F.C.); (C.V.)
| | - Fanny Coumes
- Polymer Chemistry Team, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université & CNRS, UMR 8232, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (N.A.); (F.C.); (C.V.)
| | - Clémence Veith
- Polymer Chemistry Team, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université & CNRS, UMR 8232, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (N.A.); (F.C.); (C.V.)
| | - Clément Guibert
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, 4 Place Jussieu, CEDEX 05, 75252 Paris, France;
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)-IRD-MNHN, Sorbonne Université & CNRS, UMR 7590, CEDEX 05, 75252 Paris, France;
| | - François Stoffelbach
- Polymer Chemistry Team, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université & CNRS, UMR 8232, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (N.A.); (F.C.); (C.V.)
| | - Jutta Rieger
- Polymer Chemistry Team, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université & CNRS, UMR 8232, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (N.A.); (F.C.); (C.V.)
| |
Collapse
|
10
|
Romero Castro VL, Nomeir B, Arteni AA, Ouldali M, Six JL, Ferji K. Dextran-Coated Latex Nanoparticles via Photo-RAFT Mediated Polymerization Induced Self-Assembly. Polymers (Basel) 2021; 13:4064. [PMID: 34883567 PMCID: PMC8658814 DOI: 10.3390/polym13234064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Polysaccharide coated nanoparticles represent a promising class of environmentally friendly latex to replace those stabilized by small toxic molecular surfactants. We report here an in situ formulation of free-surfactant core/shell nanoparticles latex consisting of dextran-based diblock amphiphilic copolymers. The synthesis of copolymers and the immediate latex formulation were performed directly in water using a photo-initiated reversible addition fragmentation chain transfer-mediated polymerization induced self-assembly strategy. A hydrophilic macromolecular chain transfer-bearing photosensitive thiocarbonylthio group (eDexCTA) was first prepared by a modification of the reducing chain end of dextran in two steps: (i) reductive amination by ethylenediamine in the presence of sodium cyanoborohydride, (ii) then introduction of CTA by amidation reaction. Latex nanoparticles were then formulated in situ by chain-extending eDexCTA using 2-hydroxypropyl methacrylate (HPMA) under 365 nm irradiation, leading to amphiphilic dextran-b-poly(2-hydroxypropyl methacrylate) diblock copolymers (DHX). Solid concentration (SC) and the average degree of polymerization - Xn-- of PHPMA block (X) were varied to investigate their impact on the size and the morphology of latex nanoparticles termed here SCDHX. Light scattering and transmission electron microscopy analysis revealed that SCDHX form exclusively spherical nano-objects. However, the size of nano-objects, ranging from 20 nm to 240 nm, increases according to PHPMA block length.
Collapse
Affiliation(s)
| | - Brahim Nomeir
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| | - Ana Andreea Arteni
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (A.A.A.); (M.O.)
| | - Malika Ouldali
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (A.A.A.); (M.O.)
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| |
Collapse
|
11
|
Hartlieb M. Photo-Iniferter RAFT Polymerization. Macromol Rapid Commun 2021; 43:e2100514. [PMID: 34750911 DOI: 10.1002/marc.202100514] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Indexed: 12/27/2022]
Abstract
Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.
Collapse
Affiliation(s)
- Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.,Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476, Potsdam, Germany
| |
Collapse
|
12
|
Playing construction with the monomer toy box for the synthesis of multi‐stimuli responsive copolymers by reversible deactivation radical polymerization protocols. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Akiyama Y. Synthesis of Temperature-Responsive Polymers Containing Piperidine Carboxamide and N,N-diethylcarbamoly Piperidine Moiety via RAFT Polymerization. Macromol Rapid Commun 2021; 42:e2100208. [PMID: 34145666 DOI: 10.1002/marc.202100208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/09/2021] [Indexed: 02/06/2023]
Abstract
In this study, poly(N-acryloyl-nipecotamide) (PNANAm), poly(N-acryloyl-isonipecotamide) (PNAiNAm), and poly(N-acryloyl-N,N-diethylnipecotamide) (PNADNAm) are synthesized as novel temperature-responsive polymers using reversible addition-fragmentation chain-transfer polymerization. Aqueous solutions of these three polymers are examined via temperature-dependent optical transmittance measurements. The PNANAm sample with a hydrophilic terminal group shows an upper critical solution temperature (UCST) in phosphate-buffered saline (PBS) when its molecular weight (Mn ) is 7600 or higher, whereas PNANAm (Mn < 7600) is soluble. The UCST is influenced by molecular weight and the polymer concentration. In contrast, PNANAm sample with nonionic terminal group shows UCST, when Mn is below 7600, suggesting that the terminal nonionic group possibly increases UCST of PNANAm. The urea addition experiment suggests that the driving force for expression of UCST of PNANAm is the formation of inter-and intramolecular hydrogen bonds among the polymer chains. PNAiNAm is soluble in PBS but exhibits an UCST in an appropriate concentration of ammonium sulfate. In contrast, PNADNAm exhibits a lower critical solution temperature. Comparing the chemical structure of these polymers and their phase transition behaviors suggests that the carboxamide group position in the piperidine ring could determine the UCST expression. These results could help design temperature-responsive polymers with a desired the cloud point temperature.
Collapse
Affiliation(s)
- Yoshikatsu Akiyama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
14
|
Gao Y, Zhang L, Jia R, Huang Z, Xie Y, Xuan S, Zhou N, Zhang Z, Zhu X. 2,5-Dimethylfuran/Acrylonitrile as Latent Monomer for Sequence-Controlled Copolymer and Sequence-Dependent Thermo-Responsivity. Macromol Rapid Commun 2021; 42:e2000724. [PMID: 33496041 DOI: 10.1002/marc.202000724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Indexed: 11/10/2022]
Abstract
Sequence control has attracted increasing attention for its ability of regulating polymer property and performance. Herein, the sequence-controlled polymer containing acrylonitrile (AN) is achieved by using 2,5-dimethylfuran/acrylonitrile adduct as a latent monomer. The temperature-dependent retro Diels-Alder reaction is engaged in controlling the release of AN during RAFT polymerization, that is, regulating the instant AN concentration via a non-invasive and in situ manner. Such control over the instant AN concentration and particularly the molar ratio of comonomer pair leads to the simultaneous change of monomer units in "living" polymeric chain, thus resulting in the sequence-controlled polymeric structures. By delicately manipulating the polymerization temperature, diverse sequence-on-demand structures of AN-containing copolymers, such as poly(AN/methyl methacrylate), poly(AN/styrene), poly(AN/butyl acrylate), poly(AN/N,N-dimethylacrylamide), and poly(AN/N-isopropylacrylamide) are created. Meanwhile, this study presents an initial attempt in tuning the thermal responsivity of poly(AN/N-isopropylacrylamide), which is closely correlated to the sequence of polymer structure. More importantly, the polymer with averagely distributed AN units results in the higher thermal sensitivity. Therefore, the synthetic strategy proposed in this work offers a promising platform for accessing the sequence-controlled copolymers containing AN structures, thus expanding the investigation on the relationship between the polymer structures and correlated properties.
Collapse
Affiliation(s)
- Yang Gao
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Liuqiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Rui Jia
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihao Huang
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yujie Xie
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sunting Xuan
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Global Institute of Software Technology, Suzhou National Hi-Tech District, Suzhou, 215163, China
| |
Collapse
|
15
|
Audureau N, Coumes F, Guigner JM, Nguyen TPT, Ménager C, Stoffelbach F, Rieger J. Thermoresponsive properties of poly(acrylamide- co-acrylonitrile)-based diblock copolymers synthesized (by PISA) in water. Polym Chem 2020. [DOI: 10.1039/d0py00895h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UCST-type poly(acrylamide-co-acrylonitrile) diblock copolymers synthesized in water (by PISA) can not only undergo reversible temperature-induced chain dissociation, but also temperature-induced morphological transition.
Collapse
Affiliation(s)
- Nicolas Audureau
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Fanny Coumes
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Jean-Michel Guigner
- Sorbonne Université
- CNRS
- UMR 7590 Institut de Minéralogie
- de Physique des Matériaux et de Cosmochimie (IMPMC)-IRD-MNHN
- F-75005 Paris
| | - Thi Phuong Thu Nguyen
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Christine Ménager
- Sorbonne Université
- CNRS
- UMR 8234
- PHENIX Laboratory
- 75252 Paris cedex 05
| | - François Stoffelbach
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Jutta Rieger
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| |
Collapse
|
16
|
Ikkene D, Arteni AA, Ouldali M, Six JL, Ferji K. Self-assembly of amphiphilic copolymers containing polysaccharide: PISA versus nanoprecipitation, and the temperature effect. Polym Chem 2020. [DOI: 10.1039/d0py00407c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The self-assembly methods and the temperature have a considerable impact on the morphology of the resulting nanoobjects in the case of amphiphilic glycopolymers.
Collapse
Affiliation(s)
| | - Ana Andreea Arteni
- Université Paris-Saclay
- CEA
- CNRS
- Institute for Integrative Biology of the Cell (I2BC)
- Cryo-electron Microscopy Facility
| | - Malika Ouldali
- Université Paris-Saclay
- CEA
- CNRS
- Institute for Integrative Biology of the Cell (I2BC)
- Cryo-electron Microscopy Facility
| | - Jean-Luc Six
- Université de Lorraine
- CNRS
- LCPM
- F-54000 Nancy
- France
| | - Khalid Ferji
- Université de Lorraine
- CNRS
- LCPM
- F-54000 Nancy
- France
| |
Collapse
|