1
|
Clemons TD, Egner SA, Grzybek J, Roan JJ, Sai H, Yang Y, Syrgiannis Z, Sun H, Palmer LC, Gianneschi NC, Stupp SI. Hybrid Bonding Bottlebrush Polymers Grafted from a Supramolecular Polymer Backbone. J Am Chem Soc 2024; 146:16085-16096. [PMID: 38831660 DOI: 10.1021/jacs.4c03320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Bottlebrush polymers, macromolecules consisting of dense polymer side chains grafted from a central polymer backbone, have unique properties resulting from this well-defined molecular architecture. With the advent of controlled radical polymerization techniques, access to these architectures has become more readily available. However, synthetic challenges remain, including the need for intermediate purification, the use of toxic solvents, and challenges with achieving long bottlebrush architectures due to backbone entanglements. Herein, we report hybrid bonding bottlebrush polymers (systems integrating covalent and noncovalent bonding of structural units) consisting of poly(sodium 4-styrenesulfonate) (p(NaSS)) brushes grafted from a peptide amphiphile (PA) supramolecular polymer backbone. This was achieved using photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization in water. The structure of the hybrid bonding bottlebrush architecture was characterized using cryogenic transmission electron microscopy, and its properties were probed using rheological measurements. We observed that hybrid bonding bottlebrush polymers were able to organize into block architectures containing domains with high brush grafting density and others with no observable brushes. This finding is possibly a result of dynamic behavior unique to supramolecular polymer backbones, enabling molecular exchange or translational diffusion of monomers along the length of the assemblies. The hybrid bottlebrush polymers exhibited higher solution viscosity at moderate shear, protected supramolecular polymer backbones from disassembly at high shear, and supported self-healing capabilities, depending on grafting densities. Our results demonstrate an opportunity for novel properties in easily synthesized bottlebrush polymer architectures built with supramolecular polymers that might be useful in biomedical applications or for aqueous lubrication.
Collapse
Affiliation(s)
- Tristan D Clemons
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Simon A Egner
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph Grzybek
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua J Roan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Yang Yang
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Zois Syrgiannis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hao Sun
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- International Institute of Nanotechnology, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
- International Institute of Nanotechnology, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
2
|
Ulrich HF, Gruschwitz FV, Klein T, Ziegenbalg N, Anh DTN, Fujii S, Hoeppener S, Sakurai K, Brendel JC. Influence of Polymer Side Chain Size and Backbone Length on the Self-Assembly of Supramolecular Polymer Bottlebrushes. Chemistry 2024; 30:e202400160. [PMID: 38446081 DOI: 10.1002/chem.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Hydrogen bonds are a versatile tool for creating fibrous, bottlebrush-like assemblies of polymeric building blocks. However, a delicate balance of forces exists between the steric repulsion of the polymer chains and these directed supramolecular forces. In this work we have systematically investigated the influence of structural parameters of the attached polymers on the assembly behaviour of benzene trisurea (BTU) and benzene tris(phenylalanine) (BTP) conjugates in water. Polymers with increasing main chain lengths and different side chain sizes were prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization of hydroxyethyl acrylate (HEA), tri(ethylene glycol) methyl ether acrylate (TEGA) and oligo(ethylene glycol) methyl ether acrylate (OEGA). The resulting structures were analyzed using small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Both BTU and BTP formed fibres with PHEA attached, but a transition to spherical morphologies was observed at degrees of polymerisation (DP) of 70 and above. Overall, the main chain length appeared to be a dominating factor in inducing morphology transitions. Increasing the side chain size generally had a similar effect but mainly impeded any aggregation as is the case of POEGA. Interestingly, BTP conjugates still formed fibres, suggesting that the stronger intermolecular interactions can compensate partially for the steric repulsion.
Collapse
Affiliation(s)
- Hans F Ulrich
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Tobias Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Nicole Ziegenbalg
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Doan Thi Ngoc Anh
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Current address, Macromolecular Chemistry I, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth
| |
Collapse
|
3
|
Valderrama OJ, Nischang I. Reincarnation of the Analytical Ultracentrifuge: Emerging Opportunities for Nanomedicine. Anal Chem 2021; 93:15805-15815. [PMID: 34806364 DOI: 10.1021/acs.analchem.1c03116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The analytical ultracentrifuge (AUC) and the modern field of analytical ultracentrifugation found its inception approximately a century ago. We highlight the scope of its major experimental opportunities as a transport-based method, contemporary and up-and-coming investigation potential for polymers, polymer-drug conjugates, polymer assemblies, as well as medical nanoparticles. Special focus lies on molar mass estimates of unimeric polymeric species, self-assemblies in solution, and (co)localization of multicomponent systems in solution alongside the material-biofluid interactions. We close with present challenges and incentives for future research.
Collapse
Affiliation(s)
- Olenka Jibaja Valderrama
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
4
|
Klein T, Gruschwitz FV, Kuchenbrod MT, Nischang I, Hoeppener S, Brendel JC. Adjusting the length of supramolecular polymer bottlebrushes by top-down approaches. Beilstein J Org Chem 2021; 17:2621-2628. [PMID: 34760028 PMCID: PMC8551873 DOI: 10.3762/bjoc.17.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Controlling the length of one-dimensional (1D) polymer nanostructures remains a key challenge on the way toward the applications of these structures. Here, we demonstrate that top-down processing facilitates a straightforward adjustment of the length of polyethylene oxide (PEO)-based supramolecular polymer bottlebrushes (SPBs) in aqueous solutions. These cylindrical structures self-assemble via directional hydrogen bonds formed by benzenetrisurea (BTU) or benzenetrispeptide (BTP) motifs located within the hydrophobic core of the fiber. A slow transition from different organic solvents to water leads first to the formation of µm-long fibers, which can subsequently be fragmented by ultrasonication or dual asymmetric centrifugation. The latter allows for a better adjustment of applied shear stresses, and thus enables access to differently sized fragments depending on time and rotation rate. Extended sonication and scission analysis further allowed an estimation of tensile strengths of around 16 MPa for both the BTU and BTP systems. In combination with the high kinetic stability of these SPBs, the applied top-down methods represent an easily implementable technique toward 1D polymer nanostructures with an adjustable length in the range of interest for perspective biomedical applications.
Collapse
Affiliation(s)
- Tobias Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Maren T Kuchenbrod
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|