1
|
Liu B, Fan X, Ma H, Xie Y, Fan H, Yan Q, Xiang J. A DASA displaying highly efficient and rapid reversible isomerization within sustainable nano/micro capsules: one step closer to sustainability. Chem Sci 2024; 15:d4sc04868g. [PMID: 39360006 PMCID: PMC11441471 DOI: 10.1039/d4sc04868g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Donor-acceptor Stenhouse adducts (DASAs), derived from bio-based furfural, demonstrate reversible isomerization when exposed to light and heat, positioning them as attractive candidates for sustainable smart materials. However, achieving efficient and rapid isomerization in high bio-content solid-state matrices, especially under mild conditions, remains a significant hurdle due to restricted molecular mobility and limited matrix options. To address this, we developed a novel solid matrix in the form of sustainable nano/micro capsules, which boast the highest bio-content reported to date (57%). Composed of polymethylmethacrylate (PMMA) and a lauric-stearic acid eutectic mixture (L-SEM), these capsules facilitate highly efficient and rapid reversible isomerization of a third-generation DASA (DASA-1). Remarkably, the system achieves 84% forward and 90% reverse isomerization under mild temperatures, significantly enhancing the material's photo-switching capabilities. This advancement not only addresses the critical challenge of isomerization within high bio-content solid matrices but also opens broader possibilities for the application of bio-based DASAs in environmentally friendly technologies, such as color-rich rewritable papers. By innovating in the design of sustainable smart materials, this work has the potential to extend the utility of DASAs across various scientific fields, contributing to the global shift towards a low-carbon, environmentally sustainable society.
Collapse
Affiliation(s)
- Baoshuo Liu
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
| | - Xinnian Fan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065 China
- High-Tech Organic Fibers Key Laboratory of Sichuan Province Chengdu 610041 China
| | - Hao Ma
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
| | - Yutong Xie
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
| | - Haojun Fan
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 China
| | - Jun Xiang
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
2
|
Clerc M, Sandlass S, Rifaie-Graham O, Peterson JA, Bruns N, Read de Alaniz J, Boesel LF. Visible light-responsive materials: the (photo)chemistry and applications of donor-acceptor Stenhouse adducts in polymer science. Chem Soc Rev 2023; 52:8245-8294. [PMID: 37905554 PMCID: PMC10680135 DOI: 10.1039/d3cs00508a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 11/02/2023]
Abstract
Donor-acceptor Stenhouse adduct (DASA) photoswitches have gained a lot of attention since their discovery in 2014. Their negative photochromism, visible light absorbance, synthetic tunability, and the large property changes between their photoisomers make them attractive candidates over other commonly used photoswitches for use in materials with responsive or adaptive properties. The development of such materials and their translation into advanced technologies continues to widely impact forefront materials research, and DASAs have thus attracted considerable interest in the field of visible-light responsive molecular switches and dynamic materials. Despite this interest, there have been challenges in understanding their complex behavior in the context of both small molecule studies and materials. Moreover, incorporation of DASAs into polymers can be challenging due to their incompatibility with the conditions for most common polymerization techniques. In this review, therefore, we examine and critically discuss the recent developments and challenges in the field of DASA-containing polymers, aiming at providing a better understanding of the interplay between the properties of both constituents (matrix and photoswitch). The first part summarizes current understanding of DASA design and switching properties. The second section discusses strategies of incorporation of DASAs into polymers, properties of DASA-containing materials, and methods for studying switching of DASAs in materials. We also discuss emerging applications for DASA photoswitches in polymeric materials, ranging from light-responsive drug delivery systems, to photothermal actuators, sensors and photoswitchable surfaces. Last, we summarize the current challenges in the field and venture on the steps required to explore novel systems and expand both the functional properties and the application opportunities of DASA-containing polymers.
Collapse
Affiliation(s)
- Michèle Clerc
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- University of Fribourg, Department of Chemistry, 1700 Fribourg, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| | - Sara Sandlass
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Omar Rifaie-Graham
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Julie A Peterson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| |
Collapse
|
3
|
Ma H, Li W, Fan H, Xiang J. A Red-Light-Responsive DASA-Polymer with High Water Stability for Controlled Release. Polymers (Basel) 2023; 15:polym15112489. [PMID: 37299288 DOI: 10.3390/polym15112489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Photoresponsive polymers hold vast potential in the realm of drug delivery. Currently, most photoresponsive polymers use ultraviolet (UV) light as the excitation source. However, the limited penetration ability of UV light within biological tissues serves as a significant hindrance to their practical applications. Given the strong penetration ability of red light in biological tissues, the design and preparation of a novel red-light-responsive polymer with high water stability, incorporating the reversible photoswitching compound and donor-acceptor Stenhouse adducts (DASA) for controlled drug release is demonstrated. In aqueous solutions, this polymer exhibits self-assembly into micellar nanovectors (~33 nm hydrodynamic diameter), facilitating the encapsulation of the hydrophobic model drug Nile red (NR) within the micellar core. Upon irradiation by a 660 nm LED light source, photons are absorbed by DASA, leading to the disruption of the hydrophilic-hydrophobic balance of the nanovector and thereby resulting in the release of NR. This newly designed nanovector incorporates red light as a responsive switch, successfully avoiding the problems of photodamage and limited penetration of UV light within biological tissues, thereby further promoting the practical applications of photoresponsive polymer nanomedicines.
Collapse
Affiliation(s)
- Hao Ma
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wan Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Haojun Fan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Xiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Clerc M, Tekin C, Ulrich S, Freire RVM, Salentinig S, Bruns N, Boesel LF. Donor-Acceptor Stenhouse Adduct-Polydimethylsiloxane-Conjugates for Enhanced Photoswitching in Bulk Polymers. Macromol Rapid Commun 2022; 43:e2200120. [PMID: 35396766 DOI: 10.1002/marc.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are a rapidly emerging class of visible light-activated photochromes and DASA-functionalized polymers hold great promise as biocompatible photoresponsive materials. However, the photoswitching performance of DASAs in solid polymer matrices is often low, particularly in polymeric materials below their glass transition temperature. To overcome this limitation, DASAs are conjugated to polydimethylsiloxanes which have a glass transition temperature far below room temperature and which can create a mobile molecular environment around the DASAs for achieving more solution-like photoswitching kinetics in bulk polymers. The dispersion of DASAs conjugated to such flexible oligomers into solid polymer matrices allows for more effective and tunable DASA photoswitching in stiff polymers, such as poly(methyl methacrylate), without requiring modifications of the matrix. The photoswitching of conjugates with varying polymer molecular weight, linker type and architecture is characterized via time-dependent UV-Vis spectroscopy in organic solvents and blended into polymethacrylate films. In addition, DASA-functionalized polydimethylsiloxane networks that are accessible by the same synthetic route provide an alternative solution for achieving fast and efficient DASA photoswitching in the bulk owing to their intrinsic softness and flexibility. These findings may contribute to the development of DASA-functionalized materials with better tunable, more effective, and more reversible modulation of their optical properties. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michèle Clerc
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.,University of Fribourg, Department of Chemistry, Chemin du Musée 9, Fribourg, 1700, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
| | - Cem Tekin
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Sebastian Ulrich
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Rafael V M Freire
- University of Fribourg, Department of Chemistry, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Stefan Salentinig
- University of Fribourg, Department of Chemistry, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| |
Collapse
|
5
|
Thai LD, Guimaraes TR, Spann S, Goldmann AS, Golberg D, Mutlu H, Barner-Kowollik C. Photoswitchable block copolymers based on main chain α-bisimines. Polym Chem 2022. [DOI: 10.1039/d2py00994c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce linear diblock copolymers (BCPs) consisting of readily accessable and photoswitchable α-bisimine units in the polymer backbone.
Collapse
Affiliation(s)
- Linh Duy Thai
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thiago R. Guimaraes
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Sebastian Spann
- Institute for Biological Interfaces 4 (IBG-4), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Anja S. Goldmann
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Dmitri Golberg
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Hatice Mutlu
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Xiang J, Lin J, Wang Z, Zhou S, Wang Z, Yan Q, Liu Y, Fan H. Sustainable and invisible anti-counterfeiting inks based on waterborne polyurethane and upconversion nanoparticles for leather products. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00076-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Counterfeit leather products infringe the intellectual property rights of the business, cause enormous economic loss, and negatively influence the business enthusiasm for innovation. However, traditional anti-counterfeiting materials for leather products suffer from complicated fabrication procedures, photobleaching, and high volatile organic compound (VOC) emissions. Here, a sustainable and invisible anti-counterfeiting ink composed of waterborne polyurethane and water-dispersible lanthanide-doped upconversion nanoparticles (UCNPs) featuring ease of preparation, high photostability, non-toxicity, low VOC emissions, and strong adhesion strength for leather products is designed and synthesized. After decorating on the surface of leather products, the obtained patterns are invisible under normal light conditions. Upon irradiation at 808 nm, the invisible patterns can be observed by naked eyes due to the visible light emitted by 808 nm excited UCNPs. Our approach described here opens a new pathway to realize the long-term, stable anti-counterfeiting function of leather products.
Graphical Abstract
Collapse
|