1
|
Guan L, Wu S, Li X, Li X, Wang Z, Guo W, Zvyagin AV, Qu W, Yang B, Lin Q. "All-in-one" tea polyphenol-modified injectable hyaluronic acid-based hydrogel for diabetic wound healing. Int J Biol Macromol 2024:135736. [PMID: 39293628 DOI: 10.1016/j.ijbiomac.2024.135736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Refractory diabetic wounds are a devastating and rapidly growing clinical problem, which is associated with high incidence rates, mortality, and recurrence rates. Therapeutic angiogenesis in wound tissues is essential to the healing of diabetic wounds. However, the presence of excessive oxidative stress in diabetic wounds hinders angiogenesis, and conventional anti-oxidative approaches are inefficient to compensate for the systematically impaired angiogenesis. Here, a multifunctional supramolecular hyaluronic acid hydrogel dressing for diabetic wounds is successfully designed and constructed (GHPM). The GHPM hydrogel features outstanding properties, including excellent tissue adhesion, antibacterial ability, conductivity, and antioxidant properties. Based on the dynamic crosslinking structure, the GHPM hydrogel also presents adequate injectable and self-healing capabilities, which play a vital role in covering irregular or deep wounds. Additionally, diabetic wounds treated with GHPM hydrogel showed a significant acceleration of wound closure by preventing wound infection, reducing oxidative stress, and accelerating collagen deposition. More interestingly, the combination of electrical stimulation and GHPM hydrogel can effectively promote angiogenesis and neurogenesis, further accelerating diabetic wound healing in an all-around way. This advanced collaborative strategy opens a new avenue in treating diabetic wounds.
Collapse
Affiliation(s)
- Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, PR China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiaoli Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, PR China
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, PR China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, PR China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Andrei V Zvyagin
- Institute of Molecular Theranostics, Deputy Director Sechenov First Moscow State Medical University, 8 Trubetskaya, Room 527-1, Moscow 119991, Russian Federation.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, PR China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, PR China.
| |
Collapse
|
2
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
3
|
Chen J, Luo J, Feng J, Wang Y, Lv H, Zhou Y. Spatiotemporal controlled released hydrogels for multi-system regulated bone regeneration. J Control Release 2024; 372:846-861. [PMID: 38955252 DOI: 10.1016/j.jconrel.2024.06.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Bone defect is one of the urgent problems to be solved in clinics, and it is very important to construct efficient scaffold materials to facilitate bone tissue regeneration. Hydrogels, characterized by their unique three-dimensional network structure, serve as excellent biological scaffold materials. Their internal pores are capable of loading osteogenic drugs to expedite bone formation. The rate and quality of new bone formation are intimately linked with immune regulation and vascular remodeling. The strategic sequential release of drugs to balance inflammation and regulate vascular remodeling is crucial for initiating the osteogenic process. Through the design of hydrogel microstructures, it is possible to achieve sequential drug release and the drug action time can be prolonged, thereby catering to the multi-systemic collaborative regulation needs of osteosynthesis. The drug release rate within the hydrogel is governed by swelling control systems, physical control systems, chemical control systems, and environmental control systems. Utilizing these control systems to design hydrogel materials capable of multi-drug delivery optimizes the construction of the bone microenvironment. Consequently, this facilitates the spatiotemporal controlled released of drugs, promoting bone tissue regeneration. This paper reviews the principles of the controlled release system of various sustained-release hydrogels and the advancements in research on hydrogel multi-drug delivery systems for bone tissue regeneration.
Collapse
Affiliation(s)
- Jingxia Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jiaxin Luo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jian Feng
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yihan Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Huixin Lv
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Mansour A, Acharya AB, Alliot C, Eid N, Badran Z, Kareem Y, Rahman B. Hyaluronic acid in Dentoalveolar regeneration: Biological rationale and clinical applications. J Oral Biol Craniofac Res 2024; 14:230-235. [PMID: 38510340 PMCID: PMC10950752 DOI: 10.1016/j.jobcr.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Background Hyaluronic acid (HA) is found in different locations in the periodontium, including mineralized tissues (i.e., cementum and alveolar bone) and non-mineralized tissues (i.e., gingiva and periodontal ligament). In addition, it seems to play an essential part in regulating the underlying mechanisms involved in tissue inflammatory reactions and wound healing. HA has the potential to regulate periodontal tissue regeneration and treat periodontal disease. Aim The current review of the literature was conducted to assess how HA plays its part in periodontal therapy and examine the contemporary literature's viewpoint on its use in periodontal regeneration. Conclusion HA has a multifunctional character in periodontal regeneration, and healing and appears to provide promising outcomes in different periodontal regenerative applications.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| | - Anirudh Balakrishna Acharya
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| | - Charles Alliot
- Department of Periodontology, Faculty of Dental Surgery, University of Nantes, Nantes, France
| | - Nael Eid
- Prosthodontics Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| | - Zahi Badran
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| | - Yousef Kareem
- College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Betul Rahman
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| |
Collapse
|
5
|
Chao B, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Wang L, Liu H, Zhang H, Wang Z, Wu M. Application of advanced biomaterials in photothermal therapy for malignant bone tumors. Biomater Res 2023; 27:116. [PMID: 37968707 PMCID: PMC10652612 DOI: 10.1186/s40824-023-00453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/21/2023] [Indexed: 11/17/2023] Open
Abstract
Malignant bone tumors are characterized by severe disability rate, mortality rate, and heavy recurrence rate owing to the complex pathogenesis and insidious disease progression, which seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment offering prominent hyperthermal therapeutic effects to enhance the effectiveness of surgical treatment and avoid recurrence. Simultaneously, various advanced biomaterials with photothermal capacity are currently created to address malignant bone tumors, performing distinctive biological functions, including nanomaterials, bioceramics (BC), polymers, and hydrogels et al. Furthermore, PTT-related combination therapeutic strategies can provide more significant curative benefits by reducing drug toxicity, improving tumor-killing efficiency, stimulating anti-cancer immunity, and improving immune sensitivity relative to monotherapy, even in complex tumor microenvironments (TME). This review summarizes the current advanced biomaterials applicable in PTT and relevant combination therapies on malignant bone tumors for the first time. The multiple choices of advanced biomaterials, treatment methods, and new prospects for future research in treating malignant bone tumors with PTT are generalized to provide guidance. Malignant bone tumors seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment enhancing the effectiveness of surgical treatment and avoiding recurrence. In this review, advanced biomaterials applicable in the PTT of malignant bone tumors and their distinctive biological functions are comprehensively summarized for the first time. Simultaneously, multiple PTT-related combination therapeutic strategies are classified to optimize practical clinical issues, contributing to the selection of biomaterials, therapeutic alternatives, and research perspectives for the adjuvant treatment of malignant bone tumors with PTT in the future.
Collapse
Affiliation(s)
- Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Linfeng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| |
Collapse
|
6
|
Hwang HS, Lee CS. Recent Progress in Hyaluronic-Acid-Based Hydrogels for Bone Tissue Engineering. Gels 2023; 9:588. [PMID: 37504467 PMCID: PMC10379028 DOI: 10.3390/gels9070588] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Hydrogel-based bone tissue engineering is a potential strategy for treating bone abnormalities and fractures. Hyaluronic acid (HA) is a natural polymer that is widely distributed in the human body and plays a significant role in numerous physiological processes such as cell migration, tissue hydration, and wound healing. Hydrogels based on HA and its derivatives have gained popularity as potential treatments for bone-related diseases. HA-based hydrogels have been extensively studied for their ability to mimic the natural extracellular matrix of bone tissue and provide a suitable microenvironment for cell support and tissue regeneration. The physical and chemical properties of HA can be modified to improve its mechanical strength, biocompatibility, and osteogenic potential. Moreover, HA-based hydrogels combined with other biomaterials in the presence or absence of bioactive agents have been investigated as a means of improving the mechanical properties and bioactivity of the hydrogel scaffold. Therefore, HA-based hydrogels have shown great promise in bone tissue engineering due to their biocompatibility, osteogenic activity, and ability to mimic the natural extracellular matrix of bone tissue. Overall, this review provides a comprehensive overview of the current state of the art in HA-based hydrogels for bone tissue engineering, highlighting the key advances, challenges, and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
7
|
Wang Z, Liu A, Li X, Guan L, Xing H, He L, Fang L, Zvyagin AV, Yang X, Yang B, Lin Q. Multifunctional nanoprobe for multi-mode imaging and diagnosis of metastatic prostate cancer. Talanta 2023; 256:124255. [PMID: 36652761 DOI: 10.1016/j.talanta.2023.124255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The high incidence and complex subtypes of prostate cancer put forward higher requirements for accurate diagnosis. Furthermore, advanced prostate cancer is prone to metastasis. Single biological imaging mode faces a challenge of sensitive and fast bioimaging of metastasic prostate cancer. Thus, exploring a nanoprobe with multi-mode imaging function has an important impact on preoperative imaging and intraoperative visualization guide of metastatic prostate cancer. Herein, based on the optical properties and X-ray attenuation capability of Au nanodots as well as the slow electronic relaxation of Gd3+, we designed and fabricated the multifunctional nanoprobe Au/Gd nanodots for multi-mode imaging and accurate diagnosis of bone metastatic prostate cancer. The results showed that multiple imaging modes complement each other to achieve high-precision of metastasic prostate cancer detection and accurately guide treatment. In addition, in vitro/vivo experiments showed that Au/Gd nanodots had good biocompatibility and biosafety. Therefore, the prepared multifunctional nanoprobe may provide new strategies and insights for precise diagnosis of metastatic prostate cancer in clinical practice.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Huiyuan Xing
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Liang He
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, PR China.
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130000, PR China.
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, 2109, Australia; Australia and Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105, Nizhny Novgorod, Russia
| | - Xiaoyu Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
8
|
Ma H, Qiao X, Han L. Advances of Mussel-Inspired Nanocomposite Hydrogels in Biomedical Applications. Biomimetics (Basel) 2023; 8:biomimetics8010128. [PMID: 36975358 PMCID: PMC10046294 DOI: 10.3390/biomimetics8010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels, with 3D hydrophilic polymer networks and excellent biocompatibilities, have emerged as promising biomaterial candidates to mimic the structure and properties of biological tissues. The incorporation of nanomaterials into a hydrogel matrix can tailor the functions of the nanocomposite hydrogels to meet the requirements for different biomedical applications. However, most nanomaterials show poor dispersion in water, which limits their integration into the hydrophilic hydrogel network. Mussel-inspired chemistry provides a mild and biocompatible approach in material surface engineering due to the high reactivity and universal adhesive property of catechol groups. In order to attract more attention to mussel-inspired nanocomposite hydrogels, and to promote the research work on mussel-inspired nanocomposite hydrogels, we have reviewed the recent advances in the preparation of mussel-inspired nanocomposite hydrogels using a variety of nanomaterials with different forms (nanoparticles, nanorods, nanofibers, nanosheets). We give an overview of each nanomaterial modified or hybridized by catechol or polyphenol groups based on mussel-inspired chemistry, and the performances of the nanocomposite hydrogel after the nanomaterial's incorporation. We also highlight the use of each nanocomposite hydrogel for various biomedical applications, including drug delivery, bioelectronics, wearable/implantable biosensors, tumor therapy, and tissue repair. Finally, the challenges and future research direction in designing mussel-inspired nanocomposite hydrogels are discussed.
Collapse
Affiliation(s)
- Haohua Ma
- Laboratory for Marine Drugs and Bioproducts, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266005, China
| | - Xin Qiao
- Laboratory for Marine Drugs and Bioproducts, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266005, China
| | - Lu Han
- Laboratory for Marine Drugs and Bioproducts, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266005, China
| |
Collapse
|
9
|
Li Y, Xu C, Lei C. The Delivery and Activation of Growth Factors Using Nanomaterials for Bone Repair. Pharmaceutics 2023; 15:pharmaceutics15031017. [PMID: 36986877 PMCID: PMC10052849 DOI: 10.3390/pharmaceutics15031017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Bone regeneration is a comprehensive process that involves different stages, and various growth factors (GFs) play crucial roles in the entire process. GFs are currently widely used in clinical settings to promote bone repair; however, the direct application of GFs is often limited by their fast degradation and short local residual time. Additionally, GFs are expensive, and their use may carry risks of ectopic osteogenesis and potential tumor formation. Nanomaterials have recently shown great promise in delivering GFs for bone regeneration, as they can protect fragile GFs and control their release. Moreover, functional nanomaterials can directly activate endogenous GFs, modulating the regeneration process. This review provides a summary of the latest advances in using nanomaterials to deliver exogenous GFs and activate endogenous GFs to promote bone regeneration. We also discuss the potential for synergistic applications of nanomaterials and GFs in bone regeneration, along with the challenges and future directions that need to be addressed.
Collapse
Affiliation(s)
- Yiwei Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Inorganic/Biopolymers Hybrid Hydrogels Dual Cross-Linked for Bone Tissue Regeneration. Gels 2022; 8:gels8120762. [PMID: 36547286 PMCID: PMC9777565 DOI: 10.3390/gels8120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
In tissue engineering, the potential of re-growing new tissue has been considered, however, developments towards such clinical and commercial outcomes have been modest. One of the most important elements here is the selection of a biomaterial that serves as a "scaffold" for the regeneration process. Herein, we designed hydrogels composed of two biocompatible natural polymers, namely gelatin with photopolymerizable functionalities and a pectin derivative amenable to direct protein conjugation. Aiming to design biomimetic hydrogels for bone regeneration, this study proposes double-reinforcement by way of inorganic/biopolymer hybrid filling composed of Si-based compounds and cellulose nanofibers. To attain networks with high flexibility and elastic modulus, a double-crosslinking strategy was envisioned-photochemical and enzyme-mediated conjugation reactions. The dual cross-linked procedure will generate intra- and intermolecular interactions between the protein and polysaccharide and might be a resourceful strategy to develop innovative scaffolding materials.
Collapse
|
11
|
Kai-chao S, Yu-mei H, Yi L, Rui-feng C, Xiu-li Z, Shu-wang H, Jin W, Yu-jia Z, Lu-lu W, Wen-sheng Z. Preparation of pectin-chitosan hydrogels based on bioadhesive-design micelle to prompt bacterial infection wound healing. Carbohydr Polym 2022; 300:120272. [DOI: 10.1016/j.carbpol.2022.120272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/02/2022]
|
12
|
Ahmed Omar N, Amédée J, Letourneur D, Fricain JC, Fenelon M. Recent Advances of Pullulan and/or Dextran-Based Materials for Bone Tissue Engineering Strategies in Preclinical Studies: A Systematic Review. Front Bioeng Biotechnol 2022; 10:889481. [PMID: 35845411 PMCID: PMC9280711 DOI: 10.3389/fbioe.2022.889481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Bone tissue engineering (BTE) strategies are increasingly investigated to overcome the limitations of currently used bone substitutes and to improve the bone regeneration process. Among the natural polymers used for tissue engineering, dextran and pullulan appear as natural hydrophilic polysaccharides that became promising biomaterials for BTE. This systematic review aimed to present the different published applications of pullulan and dextran-based biomaterials for BTE. An electronic search in Pubmed, Scopus, and Web of Science databases was conducted. Selection of articles was performed following PRISMA guidelines. This systematic review led to the inclusion of 28 articles on the use of pullulan and/or dextran-based biomaterials to promote bone regeneration in preclinical models. Sixteen studies focused on dextran-based materials for bone regeneration, six on pullulan substitutes and six on the combination of pullulan and dextran. Several strategies have been developed to provide bone regeneration capacity, mainly through their fabrication processes (functionalization methods, cross-linking process), or the addition of bioactive elements. We have summarized here the strategies employed to use the polysaccharide scaffolds (fabrication process, composition, application usages, route of administration), and we highlighted their relevance and limitations for BTE applications.
Collapse
Affiliation(s)
| | - Joëlle Amédée
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
| | - Didier Letourneur
- SILTISS, Saint-Viance, France
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM U1148, LVTS, X Bichat Hospital, Université de Paris, Paris, France
| | - Jean-Christophe Fricain
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
- Service de Chirurgie Orale, CHU Bordeaux, Bordeaux, France
| | - Mathilde Fenelon
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
- Service de Chirurgie Orale, CHU Bordeaux, Bordeaux, France
- *Correspondence: Mathilde Fenelon,
| |
Collapse
|
13
|
Li Z, Zhang W, Zhang Z, Gao H, Qin Y. Cancer bone metastases and nanotechnology-based treatment strategies. Expert Opin Drug Deliv 2022; 19:1217-1232. [PMID: 35737871 DOI: 10.1080/17425247.2022.2093856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Bone metastases have gradually been recognized as common metastases that affect patient quality of life and survival due to the increased incidence of primary tumors. However, there is still a lack of effective clinical treatment methods for bone metastases because of their particularity and complexity. Nanomedicine provides a new strategy for the treatment of bone metastases and shows great therapeutic potential. Thus, it is important to review the latest nanomedicine treatments for bone metastases. AREAS COVERED This review introduces the mechanistic relationships of bone metastases and summarizes nanotechnology-based treatments of bone metastases according to targeting strategies. EXPERT OPINION As we start to understand the mechanisms that enable bone metastases, we can better develop nanomedicine treatments. However, many of the mechanisms behind bone metastasis remain unclear. The application of nanomedicine shows promising anti-bone metastasis efficacy and helps to explore the pathogenesis of bone metastases. The optimized construction of nanomedicine according to bone metastatic properties is crucial to ensure the desired anti-bone metastasis efficacy and good biosafety. Therefore, the transition from bench to bedside still requires continued exploration.
Collapse
Affiliation(s)
- Zhaofeng Li
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital & Sichuan Academy of Medical Sciences & Affiliated Hospital of University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Zhong Zhang
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yi Qin
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, China
| |
Collapse
|
14
|
Teng C, Tong Z, He Q, Zhu H, Wang L, Zhang X, Wei W. Mesenchymal Stem Cells–Hydrogel Microspheres System for Bone Regeneration in Calvarial Defects. Gels 2022; 8:gels8050275. [PMID: 35621573 PMCID: PMC9141522 DOI: 10.3390/gels8050275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
The repair of large bone defects in clinic is a challenge and urgently needs to be solved. Tissue engineering is a promising therapeutic strategy for bone defect repair. In this study, hydrogel microspheres (HMs) were fabricated to act as carriers for bone marrow mesenchymal stem cells (BMSCs) to adhere and proliferate. The HMs were produced by a microfluidic system based on light-induced gelatin of gelatin methacrylate (GelMA). The HMs were demonstrated to be biocompatible and non-cytotoxic to stem cells. More importantly, the HMs promoted the osteogenic differentiation of stem cells. In vivo, the ability of bone regeneration was studied by way of implanting a BMSC/HM system in the cranial defect of rats for 8 weeks. The results confirmed that the BMSC/HM system can induce superior bone regeneration compared with both the HMs alone group and the untreated control group. This study provides a simple and effective research idea for bone defect repair, and the subsequent optimization study of HMs will provide a carrier material with application prospects for tissue engineering in the future.
Collapse
Affiliation(s)
- Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Zhicheng Tong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Qiulin He
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huangrong Zhu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Lu Wang
- Department of Pathology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China;
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (X.Z.); (W.W.)
| | - Wei Wei
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
- Correspondence: (X.Z.); (W.W.)
| |
Collapse
|