1
|
Li R, Kong W, An Z. Controlling Radical Polymerization with Biocatalysts. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Weina Kong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Herman RA, Zhu X, Ayepa E, You S, Wang J. Advances in the One-Step Approach of Polymeric Materials Using Enzymatic Techniques. Polymers (Basel) 2023; 15:703. [PMID: 36772002 PMCID: PMC9922006 DOI: 10.3390/polym15030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The formulation in which biochemical enzymes are administered in polymer science plays a key role in retaining their catalytic activity. The one-step synthesis of polymers with highly sequence-controlled enzymes is a strategy employed to provide enzymes with higher catalytic activity and thermostability in material sustainability. Enzyme-catalyzed chain growth polymerization reactions using activated monomers, protein-polymer complexation techniques, covalent and non-covalent interaction, and electrostatic interactions can provide means to develop formulations that maintain the stability of the enzyme during complex material processes. Multifarious applications of catalytic enzymes are usually attributed to their efficiency, pH, and temperature, thus, progressing with a critical structure-controlled synthesis of polymer materials. Due to the obvious economics of manufacturing and environmental sustainability, the green synthesis of enzyme-catalyzed materials has attracted significant interest. Several enzymes from microorganisms and plants via enzyme-mediated material synthesis have provided a viable alternative for the appropriate synthesis of polymers, effectively utilizing the one-step approach. This review analyzes more and deeper strategies and material technologies widely used in multi-enzyme cascade platforms for engineering polymer materials, as well as their potential industrial applications, to provide an update on current trends and gaps in the one-step synthesis of materials using catalytic enzymes.
Collapse
Affiliation(s)
- Richard Ansah Herman
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade P.O. Box 74, Ghana
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
3
|
Taylor NG, Reis MH, Varner TP, Rapp JL, Sarabia A, Leibfarth FA. A dual initiator approach for oxygen tolerant RAFT polymerization. Polym Chem 2022; 13:4798-4808. [PMID: 37799166 PMCID: PMC10552776 DOI: 10.1039/d2py00603k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Reversible-deactivation radical polymerizations are privileged approaches for the synthesis of functional and hybrid materials. A bottleneck for conducting these processes is the need to maintain oxygen free conditions. Herein we report a broadly applicable approach to "polymerize through" oxygen using the synergistic combination of two radical initiators having different rates of homolysis. The in situ monitoring of the concentrations of oxygen and monomer simultaneously provided insight into the function of the two initiators and enabled the identification of conditions to effectively remove dissolved oxygen and control polymerization under open-to-air conditions. By understanding how the surface area to volume ratio of reaction vessels influence open-to-air polymerizations, well-defined polymers were produced using acrylate, styrenic, and methacrylate monomers, which each represent an expansion of scope for the "polymerizing through" oxygen approach. Demonstration of this method in tubular reactors using continuous flow chemistry provided a more complete structure-reactivity understanding of how reaction headspace influences PTO RAFT polymerizations.
Collapse
Affiliation(s)
- Nicholas G Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marcus H Reis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Travis P Varner
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Johann L Rapp
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexis Sarabia
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
|
5
|
Zinc Imidazolate Metal–Organic Frameworks-8-Encapsulated Enzymes/Nanoenzymes for Biocatalytic and Biomedical Applications. Catal Letters 2022. [DOI: 10.1007/s10562-022-04140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Li R, Kong W, An Z. Enzyme Catalysis for Reversible Deactivation Radical Polymerization. Angew Chem Int Ed Engl 2022; 61:e202202033. [PMID: 35212121 DOI: 10.1002/anie.202202033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 12/31/2022]
Abstract
Enzyme catalysis has been increasingly utilized in reversible deactivation radical polymerization (Enz-RDRP) on account of its mildness, efficiency, and sustainability. In this Minireview we discuss the key roles enzymes play in RDRP, including their ATRPase, initiase, deoxygenation, and photoenzyme activities. We use selected examples to highlight applications of Enz-RDRP in surface brush fabrication, sensing, polymerization-induced self-assembly, and high-throughput synthesis. We also give our reflections on the challenges and future directions of this emerging area.
Collapse
Affiliation(s)
- Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, China
| | - Weina Kong
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Yuan B, Huang T, Lv X, Jiang L, Sun X, Zhang Y, Tang J. Bioenhanced Rapid Redox Initiation for RAFT Polymerization in the Air. Macromol Rapid Commun 2022; 43:e2200218. [PMID: 35751146 DOI: 10.1002/marc.202200218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Indexed: 12/17/2022]
Abstract
A well-controlled bioenhanced reversible addition-fragmentation chain transfer (RAFT) in the presence of air is carried out by using glucose oxidase (GOx), glucose, ascorbic acid (Asc acid), and ppm level of hemin. The catalytic concentration of hemin is employed to enhance hydrogen peroxide (H2 O2 )/Asc acid redox initiation, achieving rapid RAFT polymerization. Narrow molecular weight distributions and high monomer conversion (Ð as low as 1.09 at >95% conversion) are achieved within tens of minutes. Several kinds of monomers are used to verify the universal implication of the presented method. The influences of the pH and feed ratio of each component on the polymerization rate are assessed. Besides, a polymerization rate regulation is realized by managing Asc acid addition. This work significantly increases the rate of redox-initiated GOx-deoxygen RAFT polymerization by using simple and green reactants, facilitating the application of RAFT polymerization in areas such as biomedical applications.
Collapse
Affiliation(s)
- Bolei Yuan
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tingting Huang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xueying Sun
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunhe Zhang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
8
|
An Z, Li R, Kong W. Enzyme Catalysis for Reversible Deactivation Radical Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zesheng An
- Jilin University State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry 2699 Qianjin Street, Changchun 130012, China 130012 Changchun CHINA
| | - Ruoyu Li
- Jilin University College of Chemistry CHINA
| | - Weina Kong
- Jilin University College of Chemistry CHINA
| |
Collapse
|
9
|
Yang H, Lu Z, Fu X, Li Q, Zhao Y, Xiao L, Hou L. Heterogeneous Bionic Enzymes Photoinduced Oxygen Catalyzed RAFT Polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00748g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploiting aerobic polymerization approaches is the feasible strategy to fundamentally address the phenomenon of oxygen blocking polymerization. A photo-bionic enzyme-reversible addition-fragmentation chain transfer (RAFT) polymerization system (COF/H2O/O2) was successfully constructed,...
Collapse
|