1
|
Liu H, Ren D, Geng H, Tian Y, Li M, Wang N, Yuan S, Hao J, Cui J. Coacervate-Derived Assembly of Poly(ethylene glycol) Nanoparticles for Combinational Tumor Therapy. Adv Healthc Mater 2025:e2403865. [PMID: 39748607 DOI: 10.1002/adhm.202403865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Coacervates have garnered significant attention as potential drug carriers. However, the instability resulting from their intrinsic membrane-free nature restricts the application of coacervates in drug delivery. Herein, the engineering of poly(ethylene glycol) nanoparticles (PEG NPs) is reported using coacervates composed of PEG and polyphenols as the templates, where PEG is subsequently cross-linked based on different chemistries (e.g., thiol-disulfide exchange, click chemistry, and Schiff base reaction). The reported assembly strategy avoids the template removal process and the resultant PEG NPs exhibit excellent stability in the physiological environment compared to coacervates. The presence of polyphenols in PEG NPs enables the loading of various cargos including metal ions (i.e., Ru, Gd, Mn, Fe) and drug molecules (i.e., doxorubicin), which demonstrates their promise in magnetic resonance imaging and combinational tumor therapy. This work provides a promising strategy to promote the development of coacervate-derived NPs as a drug delivery system for biomedical applications.
Collapse
Affiliation(s)
- Hanru Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Dandan Ren
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Shiling Yuan
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
2
|
Vakili S, Mohamadnia Z, Ahmadi E. Self-Healing, Electrically Conductive, Antibacterial, and Adhesive Eutectogel Containing Polymerizable Deep Eutectic Solvent for Human Motion Sensing and Wound Healing. Biomacromolecules 2024; 25:7704-7722. [PMID: 39541135 DOI: 10.1021/acs.biomac.4c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Flexible electronic devices such as wearable sensors are essential to advance human-machine interactions. Conductive eutectogels are promising for wearable sensors, despite their challenges in self-healing and adhesion properties. This study introduces a multifunctional eutectogel based on a novel polymerizable deep eutectic solvent (PDES) prepared by the incorporation of diallyldimethylammonium chloride (DADMAC) and glycerol in the presence of polycyclodextrin (PCD)/dopamine-grafted gelatin (Gel-DOP)/oxidized sodium alginate (OSA). The synthesized eutectogel has reversible Schiff-base bonds, hydrogen bonds, and host-guest interactions, which enable rapid self-healing upon network disruption. GPDO-15 eutectogel has significant tissue adhesion, high stretchability (419%), good ionic conductivity (0.79 mS·cm-1), and favorable antibacterial and self-healing properties. These eutectogels achieve 90% antibacterial effect, show excellent biocompatibility, and can be used as sensors to monitor human activities with strong stability and durability. The in vivo studies indicate that the eutectogels can improve the wound healing process which makes them an effective option for biological dressings.
Collapse
Affiliation(s)
- Shaghayegh Vakili
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box, 45195-313 Zanjan, Iran
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, 45137-66731 Zanjan, Iran
| | - Ebrahim Ahmadi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box, 45195-313 Zanjan, Iran
| |
Collapse
|
3
|
Feng J, Lin Z, Zhang Y, Fang L, Zhu Q, Yu D. Rigid-Flexible Coupled Dendritic Molecule Doping: General Approach to Activate Commercial Polymers into Harsh Condition-Tolerant Multi-Reusable Strong Supramolecular Adhesives. Angew Chem Int Ed Engl 2024; 63:e202411815. [PMID: 39032126 DOI: 10.1002/anie.202411815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Developing functional adhesives combining strong adhesion, good recyclability and diverse harsh-condition adaptability is a grand challenge. Here, we introduce a general dendritic molecule doping strategy to activate commercial polymers into a new family of supramolecular adhesives integrating high adhesion strength, ultralow temperature, water resistant and multi-reusable properties. Our method involves rational design of a new rigid-flexible coupled dendritic molecule-M4C8OH as a versatile dopant, while simple M4C8OH doping into commercial polymers can modulate internal and external non-covalent interaction to enable H-bonding enhanced interchain cross-linking for tough cohesion along with enhanced interphase interaction. This endows 20 wt % M4C8OH-doped polycaprolactone (PCL) adhesives (PCL-M4C8OH) with improved adhesion strength on various substrates with the maximum increase up to 2.87 times that of PCL. In particular, the adhesion strengths of PCL-M4C8OH on polymethyl methacrylate at 25 °C and -196 °C reach 4.67 and 3.58 MPa-1.9 and 2.3 times those of PCL and superior to diverse commercial adhesives and most reported adhesives. PCL-M4C8OH also displays markedly-improved multi-usability and tolerance against ultralow temperature and diverse wet environments. Mechanism studies reveal the crucial role of M4C8OH molecular structures toward superior adhesion. Our method can be expanded to other polymer matrices, yielding diverse new supramolecular adhesives.
Collapse
Affiliation(s)
- Jie Feng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ziwei Lin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yang Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Long Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qikai Zhu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Mercadal PA, Montesinos MDM, Macchione MA, Dalosto SD, Bierbrauer KL, Calderón M, González A, Picchio ML. Freezing-Tolerant Supramolecular Adhesives from Tannic Acid-Based Low-Transition-Temperature Mixtures. ACS MATERIALS LETTERS 2024; 6:3726-3735. [PMID: 39119359 PMCID: PMC11307168 DOI: 10.1021/acsmaterialslett.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Natural polyphenols like tannic acid (TA) have recently emerged as multifunctional building blocks for designing advanced materials. Herein, we show the benefits of having TA in a dynamic liquid state using low-transition-temperature mixtures (LTTMs) for developing freezing-tolerant glues. TA was combined with betaine or choline chloride to create LTTMs, which direct the self-assembly of guanosine into supramolecular viscoelastic materials with high adhesion. Molecular dynamics simulations showed that the structural properties of the material are linked to strong hydrogen bonding in TA-betaine and TA-choline chloride mixtures. Notably, long-term and repeatable adhesion was achieved even at -196 °C due to the binding ability of TA's catechol and gallol units and the mixtures' glass transition temperature. Additionally, the adhesives demonstrated injectability and low toxicity against fibroblasts in vitro. These traits reveal the potential of these systems as bioadhesives for tissue repair, opening new avenues for creating multifunctional soft materials with bioactive properties.
Collapse
Affiliation(s)
- Pablo A. Mercadal
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), 5000 Córdoba, Argentina
- Departamento
de Recursos Naturales, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Maria del Mar Montesinos
- Centro
de Investigaciones en Bioquímica Clínica e Inmunología
(CIBICI-CONICET), Departamento de Bioquímica Clínica,
Facultad de Ciencias Químicas, Universidad
Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Micaela A. Macchione
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), 5000 Córdoba, Argentina
- Centro
de Investigaciones y Transferencia de Villa María (CIT Villa
María-CONICET-UNVM), X5900LQC Villa María, Córdoba, Argentina
| | - Sergio D. Dalosto
- Instituto
de Física del Litoral (IFIS-Litoral, CONICET-UNL), Güemes 3450, 3000 Santa Fe, Argentina
| | - Karina L. Bierbrauer
- Centro
de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón
CEPROCOR, Santa Maria de Punilla, 5164 Córdoba, Argentina
- Consejo
Nacional de Investigaciones Científicas y Técnicas (CCT
Córdoba), 5000 Córdoba, Argentina
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Agustín González
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), 5000 Córdoba, Argentina
| | - Matias L. Picchio
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
5
|
Jia L, Xiao J, Tan Y, Zhang K, Liu Y, Wang X. Supramolecular Ionogels for Use in Locating Damage to Underwater Infrastructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309231. [PMID: 38059870 DOI: 10.1002/smll.202309231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Indexed: 12/08/2023]
Abstract
The capacity to self-detect and locate damage to underwater infrastructure in emergencies is vital, as materials and technologies that securely facilitate energy and information transmission are crucial in several fields. Herein, the development of a multifunctional supramolecular ionogel (SIG) and SIG-based devices for use in detecting and locating damage to underwater infrastructure is reported. The SIG is fabricated via the single-step photoinitiated copolymerization of hydroxy and fluorinated monomers in a fluorinated ionic liquid. Hydrogen-bond/ion-dipole-interaction synergy ensures that the SIG is highly ionically conductive and extremely mechanically strong, with underwater self-healing and adhesion properties. It can be used as an underwater ionic cable to provide reporting signals via changes in strain; furthermore, SIG-based devices can be fixed to underwater infrastructure to locate damage via resistance monitoring. The SIG can also be attached to the human body for use in underwater communication, thereby safeguarding maintenance personnel while repairing underwater infrastructure. This study provides a novel pathway for developing supramolecular materials and devices.
Collapse
Affiliation(s)
- Liangying Jia
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jing Xiao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yu Tan
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Kaiqiang Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
6
|
Song H, Nan L, Wang J, Cai Y, Sun P, Liu J, Liu C, Fang L. A polyethylene glycol-grafted pullulan polysaccharide adhesive improves drug loading capacity and release efficiency. Int J Biol Macromol 2024; 265:130958. [PMID: 38503369 DOI: 10.1016/j.ijbiomac.2024.130958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
In this study, polyethylene glycol was grafted onto pullulan polysaccharides, resulting in the development of a novel adhesive termed PLUPE, offering superior drug loading capacity and rapid release efficiency. The efficacy of PLUPE was rigorously evaluated through various tests, including the tack test, shear strength test, 180° peel strength test, and human skin adhesion test. The results demonstrated that PLUPE exhibited a static shear strength that was 4.6 to 9.3 times higher than conventional PSAs, ensuring secure adhesion for over 3 days on human skin. A comprehensive analysis, encompassing electrical potential evaluation, calculation of interaction parameters, and FT-IR spectra, elucidated why improved the miscibility between the drug and PSAs, that the significant enhancement of intermolecular hydrogen bonding in the PLUPE structure. ATR-FTIR, rheological, and thermodynamic analyses further revealed that the hydrogen bonding network in PLUPE primarily interacted with polar groups in the skin. This interaction augmented the fluidity and free volume of PSA molecules, thereby promoting efficient drug release. The results confirmed the safety profile of PLUPE through skin irritation tests and MTT assays, bolstering its viability for application in TDDS patches. In conclusion, PLUPE represented a groundbreaking adhesive solution for TDDS patches, successfully overcoming longstanding challenges associated with PSAs.
Collapse
Affiliation(s)
- Haoyuan Song
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Longyi Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, 6Ministry of Education, College of Pharmacy, Yanbian University, 977 7Gongyuan Road, Yanji 133002, China
| | - Jiaqi Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yu Cai
- Key Laboratory of Natural Medicines of the Changbai Mountain, 6Ministry of Education, College of Pharmacy, Yanbian University, 977 7Gongyuan Road, Yanji 133002, China
| | - Peng Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jie Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
7
|
Chen H, Liu X, He Q, Zhang S, Xu S, Wang YZ. Upcycling Waste Thermosetting Polyimide Resins into High-Performance and Sustainable Low-Temperature-Resistance Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310779. [PMID: 37990853 DOI: 10.1002/adma.202310779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Thermosetting polyimide (PI) has attracted extensive attention for its excellent properties, but the approaches to its end-of-life management are not sustainable, posing great threat to the ecosystem. Herein, this work proposes a mild, sustainable, and full recovery path for recycling waste carbon fiber reinforced phenylethynyl end-capped PI resin composites. In addition to recycling reaction reagent and woven carbon fiber, degraded products (DPETI) can be fully and directly used as high-performance and sustainable adhesives. DPETI exhibits strong adhesion to various surfaces, with a maximum adhesion strength of 1.84 MPa. Due to the strong supramolecular polymerization behavior without solvent dependence, DPETI demonstrates higher adhesive strength of 2.22 MPa in the extreme environment (-196 °C), which is maintained even after 10 cycles. This work sparks a new thinking for plastic wastes recycling that is to convert unrecyclable wastes into new and sustainable materials, which has the potential to establish new links within circular economies and influence the development of materials science.
Collapse
Affiliation(s)
- Haodi Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Xuehui Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Qian He
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Shouqin Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Shimei Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
8
|
Xu J, Cong Q, Zhao T. A Mesostructure Multivariant-Assembly Reinforced Ultratough Biomimicking Superglue. Macromol Rapid Commun 2024; 45:e2300484. [PMID: 37704216 DOI: 10.1002/marc.202300484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Indexed: 09/15/2023]
Abstract
The imitation of mussels and oysters to create high-performance adhesives is a cutting-edge field. The introduction of inorganic fillers is shown to significantly alter the adhesive's properties, yet the potential of mesoporous materials as fillers in adhesives is overlooked. In this study, the first report on the utilization of mesoporous materials in a biomimetic adhesive system is presented. Incorporating mesoporous silica nanoparticles (MSN) profoundly enhances the adhesion of pyrogallol (PG)-polyethylene imine (PEI) adhesive. As the MSN concentration increases, the adhesion strength to glass substrates undergoes an impressive fivefold improvement, reaching an outstanding 2.5 mPa. The adhesive forms an exceptionally strong bond, to the extent that the glass substrate fractures before joint failure. The comprehensive tests involving various polyphenols, polymers, and fillers reveal an intriguing phenomenon-the molecular structure of polyphenols significantly influences adhesive strength. Steric hindrance emerges as a crucial factor, regulating the balance between π-cation and charge interactions, which significantly impacts the multicomponent assembly of polyphenol-PEI-MSN and, consequently, adhesive strength. This groundbreaking research opens new avenues for the development of novel biomimetic materials.
Collapse
Affiliation(s)
- Jin Xu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Qian Cong
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Tiancong Zhao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Fan ZW, Jin XL, Chen Y, Lu M, Wang YR, Yue K, Wen T, Tang L, Wu ZL, Sun T. Topology and Dynamic Regulations of Comb-like Polymers as Strong Adhesives. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Zhi Wei Fan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiao Lin Jin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yang Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mengze Lu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yi Ru Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Liqun Tang
- School of Civil Engineering and Transportation, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Taolin Sun
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Xu Y, Hu J, Zhang X, Yuan D, Duan G, Li Y. Robust and multifunctional natural polyphenolic composites for water remediation. MATERIALS HORIZONS 2022; 9:2496-2517. [PMID: 35920729 DOI: 10.1039/d2mh00768a] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The scarcity of clean water has become a global environmental problem which constrains the development of public health, economy, and sustainability. In recent years, natural polyphenols have drawn increasing interests as promising platforms towards diverse water remediation composites and devices, owing to their abundant and renewable resource in nature, highly active surface chemistry, and multifunctionality. This review aims to summarize the most recent advances and highlights of natural polyphenol-based composite materials (e.g., nanofibers, membranes, particles, and hydrogels) for water remediation, by focusing on their structural and functional features, as well as their diversified applications including membrane filtration, solar distillation, adsorption, advanced oxidation processes, and disinfection. Finally, the future challenges in this field are also prospected. It is anticipated that this review will provide new opportunities towards the future development of natural polyphenols and other kinds of naturally occurring molecules in water purification applications.
Collapse
Affiliation(s)
- Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Gaigai Duan
- Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
11
|
Zhang H, Zhang J, Peng X, Li Z, Bai W, Wang T, Gu Z, Li Y. Smart Internal Bio-Glues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203587. [PMID: 35901498 PMCID: PMC9507370 DOI: 10.1002/advs.202203587] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 05/25/2023]
Abstract
Although smart bio-glues have been well documented, the development of internal bio-glues for non-invasive or minimally invasive surgery is still met with profound challenges such as safety risk and the lack of deep tissue penetration stimuli for internal usage. Herein, a series of smart internal bio-glues are developed via the integration of o-nitrobenzene modified biopolymers with up-conversion nanoparticles (UCNPs). Upon irradiation by near-infrared (NIR) light, the prepared smart bio-glues can undergo a gelation process, which may further induce strong adhesion between tissues under both dry and wet conditions based on multi-interactions. Moreover, those NIR light-responsive bio-glues with deeper tissue penetration ability demonstrate good biocompatibility, excellent hemostatic performance, and the potent ability to accelerate wound healing for both external and internal wounds. This work provides new opportunities for minimally invasive surgery, especially in internal wound healing using smart and robust bio-glues.
Collapse
Affiliation(s)
- Hengjie Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jianhua Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xu Peng
- Experimental and Research Animal InstituteSichuan UniversityChengdu610041China
| | - Zhan Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Wanjie Bai
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Tianyou Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhipeng Gu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yiwen Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
12
|
Kim S, Saha B, Boykin J, Chung H. Gallol containing adhesive polymers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Sundol Kim
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Biswajit Saha
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Jacob Boykin
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| |
Collapse
|
13
|
Zhang H, Xiao Y, Chen P, Cao H, Bai W, Yang Z, Yang P, Li Y, Gu Z. Robust Natural Polyphenolic Adhesives against Various Harsh Environments. Biomacromolecules 2022; 23:3493-3504. [PMID: 35861485 DOI: 10.1021/acs.biomac.2c00704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although adhesive hydrogels have been extensively explored, the development of adhesives with long-term strong adhesion capacity under various harsh environments is still met with profound challenges such as sophisticated preparation, long-term curing, and low bonding strength. Herein, a series of robust adhesive hydrogels have been developed via the polyphenol-epoxy-cross-linking (PEC) reactions between natural polyphenols (extracts) and epoxy glycidyl ethers. The as-prepared natural polyphenolic adhesive hydrogels could induce strong adhesion onto several kinds of typical substrates (i.e., wood, glass, paper, PET, PMMA, and Fe) under both dry and wet conditions based on multi-interactions. Moreover, those natural polyphenolic adhesives exhibited good low-temperature and solvent resistance performances, which could be widely used in different kinds of device repairment (i.e., chemical, petroleum, wood, metal, glass, plastic, rubber, and other industries) under different conditions. This work could provide new opportunities toward natural-inspired robust adhesives in various fields ranging from chemical transportation, industrial manufacturing, architectural design, and marine engineering to daily life.
Collapse
Affiliation(s)
- Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Li J, Luo S, Li F, Dong S. Supramolecular Polymeric Pressure-Sensitive Adhesive That Can Be Directly Operated at Low Temperatures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27476-27483. [PMID: 35653162 DOI: 10.1021/acsami.2c05951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-temperature adhesion is ubiquitous in daily life and industry. However, most supramolecular adhesives are thermoplastic materials that require heating during the adhesion. Herein, a supramolecular approach is used to construct unique pressure-sensitive adhesives (PSAs) that can be directly operated at low temperatures (-60 °C). Supramolecular polymerization between phytic acid (PA) and water (H) endows poly(PA-H)s with excellent mechanical properties and low temperature adhesion capacity. Poly(PA-H)s can easily be processed into PSA tapes, pastes, and particles. Poly(PA-H)s were directly adhered to various surfaces by pressing at low temperatures (0 to -60 °C). No heating or high-temperature-induced solid-liquid transition was required for the low-temperature adhesion of poly(PA-H)s. With the help of structural water units in supramolecular polymers, poly(PA-H)s showed strong, stable, and organic solvent resistant adhesion performances at low temperatures, with adhesion strength of up to 3.61 MPa at -60 °C.
Collapse
Affiliation(s)
- Jialing Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Sha Luo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|