1
|
Avalos E, Teramoto T, Hirai Y, Yabu H, Nishiura Y. Controlling the Formation of Polyhedral Block Copolymer Nanoparticles: Insights from Process Variables and Dynamic Modeling. ACS OMEGA 2024; 9:17276-17288. [PMID: 38645350 PMCID: PMC11025090 DOI: 10.1021/acsomega.3c10302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/23/2024]
Abstract
This study delves into the formation of nanoscale polyhedral block copolymer particles (PBCPs) exhibiting cubic, octahedral, and variant geometries. These structures represent a pioneering class that has never been fabricated previously. PBCP features distinct variations in curvature on the outer surface, aligning with the edges and corners of polyhedral shapes. This characteristic sharply contrasts with previous block copolymers (BCPs), which displayed a smooth spherical surface. The emergence of these cornered morphologies presents an intriguing and counterintuitive phenomenon and is linked to process parameters, such as evaporation rates and initial concentration, while keeping other variables constant. Using a system of coupled Cahn-Hillard (CCH) equations, we uncover the mechanisms driving polyhedral particle formation, emphasizing the importance of controlling relaxation parameters for shape variable u and microphase separation v. This unconventional approach, differing from traditional steepest descent method, allows for precise control and diverse polyhedral particle generation. Accelerating the shape variable u proves crucial for expediting precipitation and aligns with experimental observations. Employing the above theoretical model, we achieve shape predictions for particles and the microphase separation within them, which overcomes the limitations of ab initio computations. Additionally, a numerical stability analysis discerns the transient nature versus local minimizer characteristics. Overall, our findings contribute to understanding the complex interplay between process variables and the morphology of polyhedral BCP nanoparticles.
Collapse
Affiliation(s)
- Edgar Avalos
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takashi Teramoto
- Faculty
of Data Science, Kyoto Women’s University, 35 Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto 605-8501, Japan
| | - Yutaro Hirai
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiroshi Yabu
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yasumasa Nishiura
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Research
Center of Mathematics for Social Creativity, Research Institute for
Electronic Science, Hokkaido University, N12W7, Kita-Ward, Mid-Campus Open
Laboratory Building No. 2, Sapporo 060-0812, Japan
| |
Collapse
|
2
|
Azhdari S, Post Y, Trömer M, Coban D, Quintieri G, Gröschel AH. Janus nanoplates, -bowls, and -cups: controlling size and curvature via terpolymer/homopolymer blending in 3D confinement. NANOSCALE 2023; 15:14896-14905. [PMID: 37650578 DOI: 10.1039/d3nr02902f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The synthesis and properties of Janus nanoparticles with spherical, cylindrical, and disk-like shapes are nowadays rather well understood. Other topologies such as nanorings and bowl-shaped Janus nanoparticles are believed to show distinctly different solution behavior and interaction with interfaces, but limitations in their synthesis currently prevents a proper investigation of these properties. Especially the combination of shape- and surface-anisotropy of bowl-shaped Janus nanoparticles could result in enhanced selectivity in uptake of cargo and enhanced directional diffusion. We here produce bowl-shaped Janus nanoparticles without noticeable side products through evaporation-induced confinement assembly (EICA) of triblock terpolymers blended with high molecular weight homopolymer. The triblock terpolymer phase separates from the homopolymer into spherical domes, where the terpolymer adopts a hemispherical lamella-lamella morphology (ll). Selective cross-linking, removal of the homopolymer, and disassembly of the microparticles releases the bowl-shaped Janus nanoparticles. The amount of blended homopolymer determines the size of the spherical dome, allowing to control particle curvature into flat Janus nanoplates, hemispherical Janus nanobowls, and deep Janus nanocups. The use of Shirasu Porous Glass (SPG) membranes with pore sizes in the range of dpore = 0.2-2.0 μm further provides control of particle diameter. Size and shape were analyzed with electron microscopy and the Janus character through selective surface decoration. The diffusion behavior of bowl-shaped Janus nanoparticles was investigated depending on particle curvature and anisotropy using angle-dependent dynamic light scattering.
Collapse
Affiliation(s)
- Suna Azhdari
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany.
| | - Yorick Post
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany.
| | - Manuel Trömer
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany.
| | - Deniz Coban
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany.
| | - Giada Quintieri
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany.
| | - André H Gröschel
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany.
- Polymer materials for energy storage (PES), Bavarian Centre for Battery Technology (BayBatt) and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstr. 30, 95448 Bayreuth, Germany
| |
Collapse
|
3
|
Navarro L, Thünemann AF, Yokosawa T, Spiecker E, Klinger D. Regioselective Seeded Polymerization in Block Copolymer Nanoparticles: Post-Assembly Control of Colloidal Features. Angew Chem Int Ed Engl 2022; 61:e202208084. [PMID: 35790063 PMCID: PMC9544770 DOI: 10.1002/anie.202208084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/24/2022]
Abstract
Post-assembly modifications are efficient tools to adjust colloidal features of block copolymer (BCP) particles. However, existing methods often address particle shape, morphology, and chemical functionality individually. For simultaneous control, we transferred the concept of seeded polymerization to phase separated BCP particles. Key to our approach is the regioselective polymerization of (functional) monomers inside specific BCP domains. This was demonstrated in striped PS-b-P2VP ellipsoids. Here, polymerization of styrene preferably occurs in PS domains and increases PS lamellar thickness up to 5-fold. The resulting asymmetric lamellar morphology also changes the particle shape, i.e., increases the aspect ratio. Using 4-vinylbenzyl azide as co-monomer, azides as chemical functionalities can be added selectively to the PS domains. Overall, our simple and versatile method gives access to various multifunctional BCP colloids from a single batch of pre-formed particles.
Collapse
Affiliation(s)
- Lucila Navarro
- Institute of PharmacyFreie Universität BerlinKönigin-Luise Straße 2–414195BerlinGermany
| | - Andreas F. Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM)Unter den Eichen 8712205BerlinGermany
| | - Tadahiro Yokosawa
- Institute of Micro- and Nanostructure Research (IMN) &Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNFCauerstraße 391058ErlangenGermany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) &Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNFCauerstraße 391058ErlangenGermany
| | - Daniel Klinger
- Institute of PharmacyFreie Universität BerlinKönigin-Luise Straße 2–414195BerlinGermany
| |
Collapse
|
4
|
Navarro L, Thünemann AF, Yokosawa T, Spiecker E, Klinger D. Regioselective Seeded Polymerization in Block Copolymer Nanoparticles: Post‐Assembly Control of Colloidal Features. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucila Navarro
- Freie Universitat Berlin Biology, Chemistry, Pharmacy GERMANY
| | - Andreas F. Thünemann
- Bundesanstalt fur Materialforschung und -prufung Division 6.5 Synthesis and Scattering of Nanostructure GERMANY
| | - Tadahiro Yokosawa
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM) GERMANY
| | - Erdmann Spiecker
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM) GERMANY
| | - Daniel Klinger
- Freie Universitat Berlin Biology, Chemistry, Pharmacy Königin-Luise-Str. 2-4 14195 Berlin GERMANY
| |
Collapse
|