1
|
Ma X, Lin L, Luo H, Zheng Q, Wang H, Li X, Wang Z, Feng Y, Chen Y. Construction and Performance Study of a Dual-Network Hydrogel Dressing Mimicking Skin Pore Drainage for Photothermal Exudate Removal and On-Demand Dissolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403362. [PMID: 39073303 PMCID: PMC11423237 DOI: 10.1002/advs.202403362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Indexed: 07/30/2024]
Abstract
In recent years, negative pressure wound dressings have garnered widespread attentions. However, it is challenging to drain the accumulated fluid under negative pressures for hydrogel dressings. To address this issue, this study prepared a chemical/physical duel-network PEG-CMCS/AG/MXene hydrogel composed by chemical disulfide crosslinked network of four-arm polyethylene glycol/carboxymethyl chitosan (4-Arm-PEG-SH/CMCS), and the physical network of hydrogen bond of agar (AG). Under near-infrared light (NIR) irradiation, the PEG-CMCS/AG/MXene hydrogel undergoes photothermal heating due to integrate of MXene, which destructs the hydrogen bond network and allows the removal of exudate through a mechanism mimicking the sweat gland-like effect of skin pores. The photothermal heating effect also enables the antimicrobial activity to prevent wound infections. The excellent electrical conductivity of PEG-CMCS/AG/MXene can promote cell proliferation under the external electrical stimulation (ES) in vitro. The animal experiments of full-thickness skin defect model further demonstrate its ability to accelerate wound healing. The conversion between thioester and thiol achieved with L-cysteine methyl ester hydrochloride (L-CME) can provides the on-demand dissolution of the dressing in situ. This study holds promises to provide a novel solution to the issue of fluid accumulations under hydrogel dressings and offers new approaches to alleviating or avoiding the significant secondary injuries caused by frequent dressing changes.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Lizhi Lin
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Hang Luo
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Qianqian Zheng
- Department of Polymer Science and EngineeringZhejiang UniversityZhejiang310027China
| | - Hui Wang
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Xiaoyan Li
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zhenfei Wang
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Yongqiang Feng
- Plastic Surgery Hospital of Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100144China
| | - Yu Chen
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
2
|
Yang X, Guo D, Ji X, Shi C, Messina JM, Suo L, Luo J. Telodendrimer functionalized hydrogel platform for sustained antibiotics release in infection control. Acta Biomater 2024; 178:147-159. [PMID: 38447811 DOI: 10.1016/j.actbio.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Wound infection commonly causes delayed healing, especially in the setting of chronic wounds. Local release of antibiotics is considered a viable approach to treat chronic wounds. We have developed a versatile telodendrimer (TD) platform for efficient loading of charged antibiotic molecules via a combination of multivalent and synergistic charge and hydrophobic interactions. The conjugation of TD in biocompatible hydrogel allows for topical application to provide sustained antibiotic release. Notably, a drug loading capacity as high as 20 % of the drug-to-resin dry weight ratio can be achieved. The payload content (PC) and release profile of the various antibiotics can be optimized by fine-tuning TD density and valency in hydrogel based on the charge and hydrophobic features of the drug, e.g., polymyxin B (PMB), gentamycin (GM), and daptomycin (Dap), for effective infection control. We have shown that hydrogel with moderately reduced TD density demonstrates a more favorable release profile than hydrogel with higher TD density. Antibiotics loaded in TD hydrogel have comparable antimicrobial potency and reduced cytotoxicity compared to the free antibiotics due to a prolonged, controlled drug release profile. In a mouse model of skin and soft tissue infection, the subcutaneous administration of PMB-loaded TD hydrogel effectively eliminated the bacterial burden. Overall, these results suggest that engineerable TD hydrogels have great potential as a topical treatment to control infection for wound healing. STATEMENT OF SIGNIFICANCE: Wound infection causes a significant delay in the wound healing process, which results in a significant financial and resource burden to the healthcare system. PEGA-telodendrimer (TD) resin hydrogel is an innovative and versatile platform that can be fine-tuned to efficiently encapsulate different antibiotics by altering charged and hydrophobic structural moieties. Additionally, this platform is advantageous as the TD density in the resin can also be fine-tuned to provide the desired antibiotic payload release profile. Sustained antibiotics release through optimization of TD density provides a prolonged therapeutic window and reduces burst release-induced cytotoxicity compared to conventional antibiotics application. Studies in a preclinical mouse model of bacteria-induced skin and soft tissue infection demonstrated promising therapeutic efficacy as evidenced by effective infection control and prolonged antibacterial efficacy of antibiotics-loaded PEGA-TD resin. In conclusion, the PEGA-TD resin platform provides a highly customizable approach for effective antibiotics release with significant potential for topical application to treat various bacterial wound infections to promote wound healing.
Collapse
Affiliation(s)
- Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Liye Suo
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|