1
|
Tarbashevich K, Ermlich L, Wegner J, Pfeiffer J, Raz E. The mitochondrial protein Sod2 is important for the migration, maintenance, and fitness of germ cells. Front Cell Dev Biol 2023; 11:1250643. [PMID: 37954204 PMCID: PMC10639133 DOI: 10.3389/fcell.2023.1250643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
To maintain a range of cellular functions and to ensure cell survival, cells must control their levels of reactive oxygen species (ROS). The main source of these molecules is the mitochondrial respiration machinery, and the first line of defense against these toxic substances is the mitochondrial enzyme superoxide dismutase 2 (Sod2). Thus, investigating early expression patterns and functions of this protein is critical for understanding how an organism develops ways to protect itself against ROS and enhance tissue fitness. Here, we report on expression pattern and function of zebrafish Sod2, focusing on the role of the protein in migration and maintenance of primordial germ cells during early embryonic development. We provide evidence that Sod2 is involved in purifying selection of vertebrate germ cells, which can contribute to the fitness of the organism in the following generations.
Collapse
Affiliation(s)
- Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
| | - Laura Ermlich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
| | - Julian Wegner
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
| | - Jana Pfeiffer
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
2
|
Nie W, Yan L, Lee YH, Guha C, Kurland IJ, Lu H. Advanced mass spectrometry-based multi-omics technologies for exploring the pathogenesis of hepatocellular carcinoma. MASS SPECTROMETRY REVIEWS 2016; 35:331-349. [PMID: 24890331 DOI: 10.1002/mas.21439] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 04/17/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the primary hepatic malignancies and is the third most common cause of cancer related death worldwide. Although a wealth of knowledge has been gained concerning the initiation and progression of HCC over the last half century, efforts to improve our understanding of its pathogenesis at a molecular level are still greatly needed, to enable clinicians to enhance the standards of the current diagnosis and treatment of HCC. In the post-genome era, advanced mass spectrometry driven multi-omics technologies (e.g., profiling of DNA damage adducts, RNA modification profiling, proteomics, and metabolomics) stand at the interface between chemistry and biology, and have yielded valuable outcomes from the study of a diversity of complicated diseases. Particularly, these technologies are being broadly used to dissect various biological aspects of HCC with the purpose of biomarker discovery, interrogating pathogenesis as well as for therapeutic discovery. This proof of knowledge-based critical review aims at exploring the selected applications of those defined omics technologies in the HCC niche with an emphasis on translational applications driven by advanced mass spectrometry, toward the specific clinical use for HCC patients. This approach will enable the biomedical community, through both basic research and the clinical sciences, to enhance the applicability of mass spectrometry-based omics technologies in dissecting the pathogenesis of HCC and could lead to novel therapeutic discoveries for HCC.
Collapse
Affiliation(s)
- Wenna Nie
- Chongqing University Innovative Drug Research Centre, School of Chemistry and Chemical Engineering, Chongqing, 401331, PR China
| | - Leyu Yan
- Chongqing University Innovative Drug Research Centre, School of Chemistry and Chemical Engineering, Chongqing, 401331, PR China
| | - Yie H Lee
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology, Singapore, 138602, Singapore
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, New York, New York, 10461
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, 10461
| | - Irwin J Kurland
- Stable Isotope and Metabolomics Core Facility, Diabetes Research and Training Center, Department of Medicine, Albert Einstein College of Medicine, New York, New York, 10461
| | - Haitao Lu
- Chongqing University Innovative Drug Research Centre, School of Chemistry and Chemical Engineering, Chongqing, 401331, PR China
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
3
|
Tumurbaatar B, Tikhanovich I, Li Z, Ren J, Ralston R, Kuravi S, Campbell R, Chaturvedi G, Huang TT, Zhao J, Hao J, O'Neil M, Weinman SA. Hepatitis C and alcohol exacerbate liver injury by suppression of FOXO3. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1803-1814. [PMID: 24225087 DOI: 10.1016/j.ajpath.2013.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/04/2013] [Accepted: 08/08/2013] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection exacerbates alcoholic liver injury by mechanisms that include enhanced oxidative stress. The forkhead box transcription factor FOXO3 is an important component of the antioxidant stress response that can be altered by HCV. To test whether FOXO3 is protective for alcoholic liver injury, we fed alcohol to FOXO3(-/-) mice. After 3 weeks, one third of these mice developed severe hepatic steatosis, neutrophilic infiltration, and >10-fold alanine aminotransferase (ALT) elevations. In cell culture, either alcohol or HCV infection alone increased FOXO3 transcriptional activity and expression of target genes, but the combination of HCV and alcohol together caused loss of nuclear FOXO3 and decreased its transcriptional activity. This was accompanied by increased phosphorylation of FOXO3. Mice expressing HCV structural proteins on a background of reduced expression of superoxide dismutase 2 (SOD2; Sod2(+/-)) also had increased liver sensitivity to alcohol, with elevated ALT, steatosis, and lobular inflammation. Elevated ALT was associated with an alcohol-induced decrease in SOD2 and redistribution of FOXO3 to the cytosol. These results demonstrate that FOXO3 functions as a protective factor preventing alcoholic liver injury. The combination of HCV and alcohol, but not either condition alone, inactivates FOXO3, causing a decrease in expression of its target genes and an increase in liver injury. Modulation of the FOXO3 pathway is a potential therapeutic approach for HCV-alcohol-induced liver injury.
Collapse
Affiliation(s)
- Batbayar Tumurbaatar
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Zhuan Li
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jinyu Ren
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Robert Ralston
- Department of Pharmacology and Toxicology, University of Kansas Medical Center, Kansas City, Kansas
| | - Sudhakiranmayi Kuravi
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Roosevelt Campbell
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Gaurav Chaturvedi
- Department of Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Ting-Ting Huang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California; Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California
| | - Jie Zhao
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Junfang Hao
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Maura O'Neil
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
4
|
Lee YH, Goh WWB, Ng CK, Raida M, Wong L, Lin Q, Boelsterli UA, Chung MCM. Integrative toxicoproteomics implicates impaired mitochondrial glutathione import as an off-target effect of troglitazone. J Proteome Res 2013; 12:2933-45. [PMID: 23659346 PMCID: PMC3805328 DOI: 10.1021/pr400219s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Troglitazone,
a first-generation thiazolidinedione of antihyperglycaemic
properties, was withdrawn from the market due to unacceptable idiosyncratic
hepatotoxicity. Despite intensive research, the underlying mechanism
of troglitazone-induced liver toxicity remains unknown. Here we report
the use of the Sod2+/– mouse model of silent mitochondrial oxidative-stress-based
and quantitative mass spectrometry-based proteomics to track the mitochondrial
proteome changes induced by physiologically relevant troglitazone
doses. By quantitative untargeted proteomics, we first globally profiled
the Sod2+/– hepatic
mitochondria proteome and found perturbations including GSH metabolism
that enhanced the toxicity of the normally nontoxic troglitazone.
Short- and long-term troglitazone administration in Sod2+/– mouse led to a mitochondrial
proteome shift from an early compensatory response to an eventual
phase of intolerable oxidative stress, due to decreased mitochondrial
glutathione (mGSH) import protein, decreased dicarboxylate ion carrier
(DIC), and the specific activation of ASK1-JNK and FOXO3a with prolonged
troglitazone exposure. Furthermore, mapping of the detected proteins
onto mouse specific protein-centered networks revealed lipid-associated
proteins as contributors to overt mitochondrial and liver injury when
under prolonged exposure to the lipid-normalizing troglitazone. By
integrative toxicoproteomics, we demonstrated a powerful systems approach
in identifying the collapse of specific fragile nodes and activation
of crucial proteome reconfiguration regulators when targeted by an
exogenous toxicant.
Collapse
Affiliation(s)
- Yie Hou Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | | | | | | | | | | | | | | |
Collapse
|