1
|
Maeno Y, Onoue T, Iiguni Y, Ohtani H, Kitagawa S. Compositional analysis of traditional liquid gold with separation of compounds containing heavy atoms in ion mobility-mass spectrometry. ANAL SCI 2025:10.1007/s44211-024-00708-2. [PMID: 39776047 DOI: 10.1007/s44211-024-00708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
"Liquid gold" has been traditionally used for over a century to decorate ceramicware, but its chemical composition has not been thoroughly investigated. One of the keys to successfully characterizing liquid gold, which is a complex mixture, is to distinguish Au-containing products from other chemicals. In this paper, we propose a separation based on the difference in collision cross section, of which chemicals with heavy atoms are relatively smaller than those without in ion mobility-mass spectrometry (IM-MS). Chemicals containing a single Au atom (and Pt atom) were successfully separated from other species in the two-dimensional distribution map for IM-MS. By a detailed analysis of the spectra obtained by IM-MS/MS with collision-induced dissociation before and after IM separation, we found that liquid gold (gold resinate) was a mixture of a series of (1) Au reacted with α-pinene-related units and (2) Au reacted with abietic acid units. α-Pinene and abietic acid are the main components of turpentine and rosin, the raw materials of liquid gold as reported previously (Anal. Sci. 2024, 40, 133-139). All Au-containing species contain sulfur atoms. Species of Au reacted with α-pinene-related units with different degrees of unsaturation and oxidation have also been identified. Liquid gold, a complex mixture of chemicals containing Au, has been successfully analyzed compositionally.
Collapse
Affiliation(s)
- Yoshihide Maeno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
- Noritake Co., Ltd., 300 Higashiyama, Miyoshi, Aichi, 470-0293, Japan
| | - Takei Onoue
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Yoshinori Iiguni
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
| |
Collapse
|
2
|
Sáez V, Ferrero-Del-Teso S, Mattivi F, Vrhovsek U, Arapitsas P. Advanced LC-IMS-MS Protocol for Holistic Metabolite Analysis in Wine and Grape Samples. Methods Mol Biol 2025; 2891:239-256. [PMID: 39812986 DOI: 10.1007/978-1-0716-4334-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The final aim of metabolomics is the comprehensive and holistic study of the metabolome in biological samples. Therefore, the use of instruments that enable the analysis of metabolites belonging to various chemical classes in a wide range of concentrations is essential, without compromising on robustness, resolution, sensitivity, specificity, and metabolite annotation. These characteristics are crucial for the analysis of very complex samples, such as wine, whose metabolome is the result of the sum of metabolites derived from grapes, yeast(s), bacteria(s), and chemical or physical modification during winemaking. In recent years, a big advantage, in this direction, was the hardware developments on hyphenated instruments that enable the integration of liquid chromatography (LC), ion mobility spectrometry (IMS), and mass spectrometry (MS). This chapter describes an LC-IMS-MS protocol for the analysis of wine and grape samples as well as the use of IMS data in metabolite annotation.
Collapse
Affiliation(s)
- Vania Sáez
- Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Sara Ferrero-Del-Teso
- Instituto de Ciencias de la Vid y del Vino (ICVV) (Universidad de La Rioja-CSIC-Gobierno de La Rioja), Logroño, La Rioja, Spain
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy.
- Department of Wine, Vine, and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece.
| |
Collapse
|
3
|
Maroto A, Boqué R, Jeanne Dit Fouque D, Memboeuf A. Energy-Resolved Mass Spectrometry and Mid-Infrared Spectroscopy for Purity Assessment of a Synthetic Peptide Cyclised by Intramolecular Huisgen Click Chemistry. Methods Protoc 2024; 7:97. [PMID: 39728617 DOI: 10.3390/mps7060097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Cyclic peptides have higher stability and better properties as therapeutic agents than their linear peptide analogues. Consequently, intramolecular click chemistry is becoming an increasingly popular method for the synthesis of cyclic peptides from their isomeric linear peptides. However, assessing the purity of these cyclic peptides by mass spectrometry is a significant challenge, as the linear and cyclic peptides have identical masses. In this paper, we have evaluated the analytical capabilities of energy-resolved mass spectrometry (ER MS) and mid-infrared microscopy (IR) to address this challenge. On the one hand, mixtures of both peptides were subjected to collision-induced dissociation tandem mass spectrometry (CID MS/MS) experiments in an ion trap mass spectrometer at several excitation energies. Two different calibration models were used: a univariate model (at a single excitation voltage) and a multivariate model (using multiple excitation voltages). The multivariate model demonstrated slightly enhanced analytical performance, which can be attributed to more effective signal averaging when multiple excitation voltages are considered. On the other hand, IR microscopy was used for the quantification of the relative amount of linear peptide. This was achieved through univariate calibration, based on the absorbance of an alkyne band specific to the linear peptide, and through Partial Least Squares (PLS) multivariate calibration. The PLS calibration model demonstrated superior performance in comparison to univariate calibration, indicating that consideration of the full IR spectrum is preferable to focusing on the specific peak of the linear peptide. The advantage of IR microscopy is that it is linear across the entire working interval, from linear peptide molar ratios of 0 (equivalent to pure cyclic peptide) up to 1 (pure linear peptide). In contrast, the ER MS calibration models exhibited linearity only up to 0.3 linear peptide molar ratio. However, ER MS showed better performances in terms of the limit of detection, intermediate precision and the root-mean-square-error of calibration. Therefore, ER MS is the optimal choice for the detection and quantification of the lowest relative amounts of linear peptides.
Collapse
Affiliation(s)
- Alicia Maroto
- Univ Brest, CEMCA, CNRS, UMR 6521, 29238 Brest, France
| | - Ricard Boqué
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo 1, 43007 Tarragona, Spain
| | | | | |
Collapse
|
4
|
Titkare N, Chaturvedi S, Borah S, Sharma N. Advances in mass spectrometry for metabolomics: Strategies, challenges, and innovations in disease biomarker discovery. Biomed Chromatogr 2024; 38:e6019. [PMID: 39370857 DOI: 10.1002/bmc.6019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Mass spectrometry (MS) plays a crucial role in metabolomics, especially in the discovery of disease biomarkers. This review outlines strategies for identifying metabolites, emphasizing precise and detailed use of MS techniques. It explores various methods for quantification, discusses challenges encountered, and examines recent breakthroughs in biomarker discovery. In the field of diagnostics, MS has revolutionized approaches by enabling a deeper understanding of tissue-specific metabolic changes associated with disease. The reliability of results is ensured through robust experimental design and stringent system suitability criteria. In the past, data quality, standardization, and reproducibility were often overlooked despite their significant impact on MS-based metabolomics. Progress in this field heavily depends on continuous training and education. The review also highlights the emergence of innovative MS technologies and methodologies. MS has the potential to transform our understanding of metabolic landscapes, which is crucial for disease biomarker discovery. This article serves as an invaluable resource for researchers in metabolomics, presenting fresh perspectives and advancements that propels the field forward.
Collapse
Affiliation(s)
- Nikhil Titkare
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Sachin Chaturvedi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Sapan Borah
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Tozihi M, Bahrami H, Garmabdashti M. Thermal decomposition and atmospheric pressure chemical ionization of alanine using ion mobility spectrometry and computational study. Heliyon 2024; 10:e39942. [PMID: 39553543 PMCID: PMC11566689 DOI: 10.1016/j.heliyon.2024.e39942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
This study investigates the impact of thermal decomposition on the ion mobility spectrum of L-alanine using ion mobility spectrometry (IMS) and computational methods. By employing a post-injection delay system, we examined the evolution of ion peaks corresponding to thermal decomposition products and their interaction with protonated alanine. Experimental results revealed that the observed ion mobility spectra predominantly feature protonated isomers and adduct ions. Computational analysis using Density Functional Theory (DFT) predicted the thermodynamically favored structures and stabilities of these products. Findings indicate that protonation at the nitrogen site in alanine is more stable than at the oxygen site, and observed peaks correspond to protonated isomers and adducts formed with ammonium ions. Further investigations showed that thermal decomposition of alanine generates ammonia, contributing to the formation of new adduct ions. This research provides new insights into the behavior of amino acids under thermal conditions with implications for analytical chemistry and biochemistry.
Collapse
Affiliation(s)
- Manijeh Tozihi
- Department of Chemistry, University of Zanjan, Zanjan, 38791-45371, Iran
| | - Hamed Bahrami
- Department of Chemistry, University of Zanjan, Zanjan, 38791-45371, Iran
| | | |
Collapse
|
6
|
Sadeghi P, Alshawabkeh R, Rui A, Sun NX. A Comprehensive Review of Biomarker Sensors for a Breathalyzer Platform. SENSORS (BASEL, SWITZERLAND) 2024; 24:7263. [PMID: 39599040 PMCID: PMC11598263 DOI: 10.3390/s24227263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Detecting volatile organic compounds (VOCs) is increasingly recognized as a pivotal tool in non-invasive disease diagnostics. VOCs are metabolic byproducts, mostly found in human breath, urine, feces, and sweat, whose profiles may shift significantly due to pathological conditions. This paper presents a thorough review of the latest advancements in sensor technologies for VOC detection, with a focus on their healthcare applications. It begins by introducing VOC detection principles, followed by a review of the rapidly evolving technologies in this area. Special emphasis is given to functionalized molecularly imprinted polymer-based biochemical sensors for detecting breath biomarkers, owing to their exceptional selectivity. The discussion examines SWaP-C considerations alongside the respective advantages and disadvantages of VOC sensing technologies. The paper also tackles the principal challenges facing the field and concludes by outlining the current status and proposing directions for future research.
Collapse
Affiliation(s)
- Pardis Sadeghi
- W.M. Keck Laboratory for Integrated Ferroics, Department of Electrical & Computer Engineering, Northeastern University, Boston, MA 02115, USA; (P.S.)
| | - Rania Alshawabkeh
- W.M. Keck Laboratory for Integrated Ferroics, Department of Electrical & Computer Engineering, Northeastern University, Boston, MA 02115, USA; (P.S.)
| | - Amie Rui
- W.M. Keck Laboratory for Integrated Ferroics, Department of Electrical & Computer Engineering, Northeastern University, Boston, MA 02115, USA; (P.S.)
| | - Nian Xiang Sun
- W.M. Keck Laboratory for Integrated Ferroics, Department of Electrical & Computer Engineering, Northeastern University, Boston, MA 02115, USA; (P.S.)
- Winchester Technologies LLC, Burlington, MA 01803, USA
| |
Collapse
|
7
|
Gandhi VD, Hua L, Lawrenz M, Latif M, Rolland AD, Campuzano IDG, Larriba-Andaluz C. Elucidating Protein Structures in the Gas Phase: Traversing Configuration Space with Biasing Methods. J Chem Theory Comput 2024; 20:9720-9733. [PMID: 39439194 DOI: 10.1021/acs.jctc.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Achieving accurate characterization of protein structures in the gas phase continues to be a formidable challenge. To tackle this issue, the present study employs Molecular Dynamics (MD) simulations in tandem with enhanced sampling techniques (methods designed to efficiently explore protein conformations). The objective is to identify suitable structures of proteins by contrasting their calculated Collision Cross-Section (CCS) with those observed experimentally. Significant discrepancies were observed between the initial MD-simulated and experimentally measured CCS values through Ion Mobility-Mass Spectrometry (IMS-MS). To bridge this gap, we employed two distinct enhanced sampling methods, Harmonic Biasing Potential and Adaptive Biasing Force, which help the proteins overcome energy barriers to adopt more compact configurations. These techniques leverage the radius of gyration as a reaction coordinate (guiding parameter), guiding the system toward compressed states that potentially match experimental configurations more closely. The guiding forces are only employed to overcome existing barriers and are removed to allow the protein to naturally arrive at a potential gas phase configuration. The results demonstrated close alignment (within ∼4%) between simulated and experimental CCS values despite using different strengths and/or methods, validating their efficacy. This work lays the groundwork for future studies aimed at optimizing biasing methods and expanding the collective variables used for more accurate gas-phase structural predictions.
Collapse
Affiliation(s)
- Viraj D Gandhi
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Leyan Hua
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Morgan Lawrenz
- Molecular Analytics, AMGEN Research, Thousand Oaks, California 91320, United States
| | - Mohsen Latif
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Iain D G Campuzano
- Molecular Analytics, AMGEN Research, Thousand Oaks, California 91320, United States
| | - Carlos Larriba-Andaluz
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| |
Collapse
|
8
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
9
|
Szeitz A, Sutton AG, Hallam SJ. A matrix-centered view of mass spectrometry platform innovation for volatilome research. Front Mol Biosci 2024; 11:1421330. [PMID: 39539739 PMCID: PMC11557394 DOI: 10.3389/fmolb.2024.1421330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Volatile organic compounds (VOCs) are carbon-containing molecules with high vapor pressure and low water solubility that are released from biotic and abiotic matrices. Because they are in the gaseous phase, these compounds tend to remain undetected when using conventional metabolomic profiling methods. Despite this omission, efforts to profile VOCs can provide useful information related to metabolic status and identify potential signaling pathways or toxicological impacts in natural or engineered environments. Over the past several decades mass spectrometry (MS) platform innovation has instigated new opportunities for VOC detection from previously intractable matrices. In parallel, volatilome research linking VOC profiles to other forms of multi-omic information (DNA, RNA, protein, and other metabolites) has gained prominence in resolving genotype/phenotype relationships at different levels of biological organization. This review explores both on-line and off-line methods used in VOC profiling with MS from different matrices. On-line methods involve direct sample injection into the MS platform without any prior compound separation, while off-line methods involve chromatographic separation prior to sample injection and analyte detection. Attention is given to the technical evolution of platforms needed for increasingly resolved VOC profiles, tracing technical progress over time with particular emphasis on emerging microbiome and diagnostic applications.
Collapse
Affiliation(s)
- Andras Szeitz
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annika G. Sutton
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Steven J. Hallam
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
- Bradshaw Research Institute for Minerals and Mining (BRIMM), University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Yang B, Ye Z, Lu F, Yu J, Liu J, Zheng X, Wang C, Duan L, Yang Z, Jing G, Liu W, Li W, Liu W. High Resolving Power Electrospray Ionization Ion Mobility Spectrometer Based on Fourier Deconvolution Multiplexing. Anal Chem 2024; 96:17423-17431. [PMID: 39413295 DOI: 10.1021/acs.analchem.4c04549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The resolving power of the drift tube ion mobility spectrometry (IMS) is mainly dependent on the drift length, the drift voltage, the pulse width of an ion gate, and the pressure inside the drift tube. Electrospray ionization (ESI)-IMS is a highly sensitive and reliable technique for the detection and analysis of nonvolatile compounds, and high resolving power is necessary to separate structurally similar compounds. To improve the analytical performance of atmospheric pressure ESI-IMS, the Fourier deconvolution (FD) multiplexing technique is investigated as an effective and convenient means to improve the resolving power as well as the signal-to-noise ratio. By reducing the equivalent ion gate opening width to 5 μs using a typical Tyndall-Powell ion shutter, a high resolving power RP up to 170 can be achieved with a drift length of 12 cm and a drift voltage of 10 kV. Rhodamine 6G (R6G), sodium dodecyl sulfate (SDS), methacycline, oxytetracycline, and ractopamine were evaluated using the FD-ESI-IMS, and mixtures with similar ion mobility can be well separated without prolonging the drift length.
Collapse
Affiliation(s)
- Binwang Yang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Zhixiong Ye
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Feiyu Lu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jianna Yu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jiaxu Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Xiuqing Zheng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Cheng Wang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Lian Duan
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Zhijian Yang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Guoxing Jing
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wen Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wenshan Li
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wenjie Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
11
|
Butalewicz JP, Sanders JD, Juetten KJ, Buzitis NW, Clowers BH, Brodbelt JS. Advancing Protein Analysis: A Low-Pressure Drift Tube Orbitrap Mass Spectrometer for Ultraviolet Photodissociation-Based Structural Characterization. Anal Chem 2024; 96:15674-15681. [PMID: 39283946 DOI: 10.1021/acs.analchem.4c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Owing to its ability to generate extensive fragmentation of proteins, ultraviolet photodissociation (UVPD) mass spectrometry (MS) has emerged as a versatile ion activation technique for the structural characterization of native proteins and protein complexes. Interpreting these fragmentation patterns provides insight into the secondary and tertiary structures of protein ions. However, the inherent complexity and diversity of proteins often pose challenges in resolving their numerous conformations. To address this limitation, we combined UVPD-MS with drift tube ion mobility, offering potential to acquire conformationally selective MS/MS information. A low-pressure drift tube (LPDT) Orbitrap mass spectrometer equipped with 193 nm UVPD capabilities enables the analysis of protein conformers through the analysis of arrival time distributions (ATDs) of individual fragment ions. ATDs of fragment ions are compared for different backbone cleavage sites of the protein or different precursor charge states to give information about regions of potential folding or elongation. This integrated platform offers promise for advancing our understanding of protein structures in the gas phase.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathan W Buzitis
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Meng X, Su C, Zhang Z, Li Y, Zhang Y, Li J, Gan L, Gu J. Overcoming the challenge of potent endogenous interferences in limaprost quantification: An innovative methodology combining differential mobility spectrometry with LC-MS/MS for ultra-high sensitivity, selectivity and significantly enhanced throughput. Talanta 2024; 277:126411. [PMID: 38876034 DOI: 10.1016/j.talanta.2024.126411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Limaprost, an orally administered analogue of prostaglandin E1, possesses potent vasodilatory, antiplatelet, and cytoprotective properties. Due to its extremely low therapeutic doses and exceedingly low plasma concentrations, the pharmacokinetic and bioequivalence studies of limaprost necessitate a highly sensitive quantitative method with a sub-pg/mL level of lower limit of quantification. Moreover, the intensity of endogenous interferences can even exceed the maximum concentration level of limaprost in human plasma, presenting further challenge to the quantification of limaprost. As a result, existing methods have not yet met the necessary level of sensitivity, selectivity, and throughput needed for the quantitative analysis of limaprost in pharmacokinetic and bioequivalence investigations. This study presents a new methodology that combines differential mobility spectrometry (DMS) with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and utilizes a distinctive strategy to achieve more accurate DMS conditions. This integration yields a method that is currently the most sensitive and features the shortest analytical time, making it the sole technique capable of meeting the requirements for limaprost pharmacokinetic and bioequivalence investigations. This method demonstrates robustness and is successfully employed in a pharmacokinetic investigation of limaprost in human subjects, underscoring that the combination of DMS with LC-MS/MS serves as an efficacious strategy for overcoming the challenges inherent in analyzing biological samples afflicted by multiple interferences.
Collapse
Affiliation(s)
- Xiangjun Meng
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, China; School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Chong Su
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Zhi Zhang
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yaoshuang Li
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yuyao Zhang
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jingtao Li
- Beijing Tide Pharmaceutical Co., Ltd., Beijing, 100176, China
| | - Leling Gan
- Beijing Tide Pharmaceutical Co., Ltd., Beijing, 100176, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, China; State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, China; Beijing Institute of Drug Metabolism, Beijing, 102209, China.
| |
Collapse
|
13
|
Iwamoto K, Inoue G, Matsubara H. Structural analysis of C 8H 6˙ + fragment ion from quinoline using ion-mobility spectrometry/mass spectrometry. Phys Chem Chem Phys 2024; 26:17205-17212. [PMID: 38855902 DOI: 10.1039/d4cp01676a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
This study investigated the structures of fragment ions derived from the quinoline (C9H7N) radical cation using ion-mobility spectrometry and mass spectrometry. Ion mobility and mass analysis revealed that C8H6˙+ is the primary dissociation product resulting from the loss of HCN during collision-induced dissociation of the quinoline radical cation. The reduced mobility (K0) of the C8H6˙+ fragment product in helium gas was measured over a range of reduced electric fields (E/N = 20.8-27.4 Td) at room temperature. The experimental K0 values indicated that C8H6˙+ is a mixture of phenylacetylene and pentalene radical cations. Furthermore, quantum chemical calculations revealed two potential energy surfaces delineating the loss of HCN from the quinoline radical cation to form phenylacetylene radical cations.
Collapse
Affiliation(s)
- Kenichi Iwamoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan.
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| | - Genki Inoue
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Hiroshi Matsubara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan.
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
14
|
Ross DH, Bhotika H, Zheng X, Smith RD, Burnum-Johnson KE, Bilbao A. Computational tools and algorithms for ion mobility spectrometry-mass spectrometry. Proteomics 2024; 24:e2200436. [PMID: 38438732 PMCID: PMC11632599 DOI: 10.1002/pmic.202200436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS or IM-MS) is a powerful analytical technique that combines the gas-phase separation capabilities of IM with the identification and quantification capabilities of MS. IM-MS can differentiate molecules with indistinguishable masses but different structures (e.g., isomers, isobars, molecular classes, and contaminant ions). The importance of this analytical technique is reflected by a staged increase in the number of applications for molecular characterization across a variety of fields, from different MS-based omics (proteomics, metabolomics, lipidomics, etc.) to the structural characterization of glycans, organic matter, proteins, and macromolecular complexes. With the increasing application of IM-MS there is a pressing need for effective and accessible computational tools. This article presents an overview of the most recent free and open-source software tools specifically tailored for the analysis and interpretation of data derived from IM-MS instrumentation. This review enumerates these tools and outlines their main algorithmic approaches, while highlighting representative applications across different fields. Finally, a discussion of current limitations and expectable improvements is presented.
Collapse
Affiliation(s)
- Dylan H. Ross
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA 99354, USA
| | - Harsh Bhotika
- Environmental Molecular Sciences Laboratory, Pacific
Northwest National Laboratory, Richland, WA 99354, USA
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA 99354, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA 99354, USA
| | - Kristin E. Burnum-Johnson
- Environmental Molecular Sciences Laboratory, Pacific
Northwest National Laboratory, Richland, WA 99354, USA
| | - Aivett Bilbao
- Environmental Molecular Sciences Laboratory, Pacific
Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
15
|
Zimnicka MM. Structural studies of supramolecular complexes and assemblies by ion mobility mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:526-559. [PMID: 37260128 DOI: 10.1002/mas.21851] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Recent advances in instrumentation and development of computational strategies for ion mobility mass spectrometry (IM-MS) studies have contributed to an extensive growth in the application of this analytical technique to comprehensive structural description of supramolecular systems. Apart from the benefits of IM-MS for interrogation of intrinsic properties of noncovalent aggregates in the experimental gas-phase environment, its merits for the description of native structural aspects, under the premises of having maintained the noncovalent interactions innate upon the ionization process, have attracted even more attention and gained increasing interest in the scientific community. Thus, various types of supramolecular complexes and assemblies relevant for biological, medical, material, and environmental sciences have been characterized so far by IM-MS supported by computational chemistry. This review covers the state-of-the-art in this field and discusses experimental methods and accompanying computational approaches for assessing the reliable three-dimensional structural elucidation of supramolecular complexes and assemblies by IM-MS.
Collapse
Affiliation(s)
- Magdalena M Zimnicka
- Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Maroto A, Dit Fouque DJ, Lartia R, Memboeuf A. Removal of isobaric interference using pseudo-multiple reaction monitoring and energy-resolved mass spectrometry for the isotope dilution quantification of a tryptic peptide. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5025. [PMID: 38607249 DOI: 10.1002/jms.5025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Energy-resolved mass spectrometry (ERMS) and an isotopically labelled internal standard were successfully combined to accurately quantify a tryptic peptide despite the presence of an isobaric interference. For this purpose, electrospray ionisation tandem mass spectrometry (ESI-MS/MS) experiments were conducted into an ion trap instrument using an unconventional 8 m/z broadband isolation window, which encompassed both the tryptic peptide and its internal standard. Interference removal was assessed by determining an excitation voltage that was high enough to maintain a constant value for the analyte/internal standard peaks intensity ratio, thus ensuring accurate quantification even in the presence of isobaric contamination. Pseudo-multiple reaction monitoring (MRM) was employed above this excitation voltage to quantify the trypic peptide. The internal standard calibration model showed no lack of fit and exhibited a linear dynamic range from 0.5 μM up to 2.5 μM. The detection limit was 0.08 μM. The accuracy of the method was evaluated by quantifying the tryptic peptide of three reference samples intentionally contaminated with the isobaric interference. All the reference samples were accurately quantified with ∼1% deviation despite the isobaric contamination. Furthermore, we have demonstrated that this methodology can also be applied to quantify the isobaric peptide by standard additions down to 0.2 μM. Finally, liquid chromatography ERMS (LC ERMS) experiments yielded similar results, suggesting the potential of the proposed methodology for analysing complex samples.
Collapse
|
17
|
Rasker S, Blokland MH, Bovee TFH, Arrizabalaga-Larrañaga A. Exploring the potential of using ion mobility-mass spectrometry to separate matrix interferences from analytes in food control. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124086. [PMID: 38489940 DOI: 10.1016/j.jchromb.2024.124086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
During residue analysis in complex matrices for food safety purposes, interfering signals can sometimes overlap with those of the analyte of interest. Access to an additional separation dimension besides chromatographic and mass separation, such as ion mobility, can aid in removing interfering signals, allowing for correct analyte identification in these cases. In our laboratory, during routine LC-MS/MS analysis of liver samples for growth promoter residues, an interfering signal was found that matches the retention time and m/z values for stanozolol, a synthetic anabolic steroid. In the present work, the performance of a liquid chromatography coupled to ion mobility mass spectrometry (LC-IM-MS) method has been evaluated to study whether this LC-MS/MS false positive in liver samples could be eliminated by LC-IM-MS analysis. A cyclic ion mobility system already allowed the separation of stanozolol from the interfering peak after only one pass, showing a significant improvement compared to the conventional LC-MS/MS method. Additionally, collisional cross section (CCS) values were calculated and successfully compared with those from literature for identification purposes, eventually allowing both the identification and quantification of stanozolol in this complex matrix.
Collapse
Affiliation(s)
- Sjors Rasker
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - Marco H Blokland
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - Toine F H Bovee
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - Ane Arrizabalaga-Larrañaga
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands.
| |
Collapse
|
18
|
Moehnke K, Kemp J, Campbell MR, Singh RJ, Tebo AE, Maus A. Using differential mobility spectrometry to improve the specificity of targeted measurements of 2,3-dinor 11β-Prostaglandin F2α. Clin Biochem 2024; 126:110745. [PMID: 38462204 DOI: 10.1016/j.clinbiochem.2024.110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION 2,3-dinor 11β-Prostaglandin F2α (BPG) is an arachidonic acid derivative and the most abundant metabolic byproduct of prostaglandin D2, which is released during mast cell activation. Therefore, measurements of BPG in urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS) provide a noninvasive method for evaluation and management of mast cell disorders. Measurements obtained by LC-MS/MS exhibit a high prevalence of chromatographic interferences resulting in challenges with optimal determination of BGP. In this investigation, differential mobility spectrometry (DMS) is utilized to overcome the limitations of current testing. METHODS Urine samples were extracted using an automated solid-phase extraction method. Samples were then analyzed with and without DMS devices installed on two commercially available mass spectrometry platforms to assess the benefits of DMS. Following promising results from a preliminary analytical evaluation, LC-DMS-MS/MS measurements of BPG in urine were fully validated to assess the analytical implications of using this technology. RESULTS AND DISCUSSION The addition of DMS devices to the LC-MS/MS systems evaluated in this investigation significantly reduced interferences observed in the chromatograms. Concomitantly, DMS reduced the number of discordant quantifier/qualifier fragment ion results that significantly exceeded the ± 20 % limits, suggesting greater analytical specificity. The validation studies yielded low interday imprecision, with %CVs less than 6.5 % across 20 replicate measurements. Validation studies assessing other aspects of analytical performance also met acceptance criteria. CONCLUSIONS Incorporating DMS devices greatly improved the specificity of BPG measurements by LC-MS/MS, as evidenced by the comparison of chromatograms and fragment ion results. Validation studies showed exceptional performance for established analytical metrics, indicating that this technology can be used to minimize the impact of interferences without adversely impacting other aspects of analytical or clinical performance.
Collapse
Affiliation(s)
- Kayla Moehnke
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer Kemp
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle R Campbell
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Anne E Tebo
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Anthony Maus
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
19
|
Sarkar S, Roy D, Chatterjee B, Ghosh R. Clinical advances in analytical profiling of signature lipids: implications for severe non-communicable and neurodegenerative diseases. Metabolomics 2024; 20:37. [PMID: 38459207 DOI: 10.1007/s11306-024-02100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Lipids play key roles in numerous biological processes, including energy storage, cell membrane structure, signaling, immune responses, and homeostasis, making lipidomics a vital branch of metabolomics that analyzes and characterizes a wide range of lipid classes. Addressing the complex etiology, age-related risk, progression, inflammation, and research overlap in conditions like Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and Cancer poses significant challenges in the quest for effective therapeutic targets, improved diagnostic markers, and advanced treatments. Mass spectrometry is an indispensable tool in clinical lipidomics, delivering quantitative and structural lipid data, and its integration with technologies like Liquid Chromatography (LC), Magnetic Resonance Imaging (MRI), and few emerging Matrix-Assisted Laser Desorption Ionization- Imaging Mass Spectrometry (MALDI-IMS) along with its incorporation into Tissue Microarray (TMA) represents current advances. These innovations enhance lipidomics assessment, bolster accuracy, and offer insights into lipid subcellular localization, dynamics, and functional roles in disease contexts. AIM OF THE REVIEW The review article summarizes recent advancements in lipidomic methodologies from 2019 to 2023 for diagnosing major neurodegenerative diseases, Alzheimer's and Parkinson's, serious non-communicable cardiovascular diseases and cancer, emphasizing the role of lipid level variations, and highlighting the potential of lipidomics data integration with genomics and proteomics to improve disease understanding and innovative prognostic, diagnostic and therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical lipidomic studies are a promising approach to track and analyze lipid profiles, revealing their crucial roles in various diseases. This lipid-focused research provides insights into disease mechanisms, biomarker identification, and potential therapeutic targets, advancing our understanding and management of conditions such as Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and specific cancers.
Collapse
Affiliation(s)
- Sutanu Sarkar
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Deotima Roy
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Bhaskar Chatterjee
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Rajgourab Ghosh
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
20
|
Mischnick P, Schleicher S. Potential of ion mobility mass spectrometry in cellulose ether analysis: substitution pattern of hydroxyethyl celluloses. Anal Bioanal Chem 2024:10.1007/s00216-024-05224-w. [PMID: 38436692 DOI: 10.1007/s00216-024-05224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Ion mobility mass spectrometry (ESI-tims-ToF-MS, syringe pump infusion) has been applied to glucose and oligosaccharide ethers derived from hydroxyethyl-methyl celluloses (HEMC) and hydroxyethyl celluloses (HEC) after permethylation and partial depolymerization: by hydrolysis without or with subsequent reductive amination with m-amino benzoic acid (mABA) or by reductive cleavage. As model compounds without tandem substitution methoxyethylated methylcellulose was used. Regioisomeric glucose ethers were separated according to their ion mobility, and positions of substitution could be assigned. Glucose ethers including isomers with tandem substitution showed additional signals with a smaller collision cross-section (CCS) than core-substituted isomers. Positional isomers of cellobiose ethers were only partly resolved due to too high complexity but showed a characteristic fingerprint that might allow classifying samples. Relative intensities of signals of glucose ether isomers could only be quantified in case of ABA derivatives with its fixed charge, while sodium adducts of methoxyethyl ethers showed an influence of the MeOEt position on ion yield. Results were in very good agreement with reference analysis. [M + Na]+ adducts of α- and β-anomers of glucose derivatives were separated in IM, complicating position assignment. This could be overcome by reductive cleavage of the permethylated HE(M)C yielding 1,5-anhydroglucitol-terminated oligosaccharides, showing the best resolved fingerprints of the cellobiose ethers of a particular cellulose ether. With this first application of ion mobility MS to the analysis of complex cellulose ethers, the promising potential of this additional separation dimension in mass spectrometry is demonstrated and discussed.
Collapse
Affiliation(s)
- Petra Mischnick
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstr. 20, 38106, Braunschweig, Germany.
| | - Sarah Schleicher
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstr. 20, 38106, Braunschweig, Germany
| |
Collapse
|
21
|
Díaz-Galiano FJ, Murcia-Morales M, Fernández-Alba AR. From sound check to encore: A journey through high-resolution mass spectrometry-based food analyses and metabolomics. Compr Rev Food Sci Food Saf 2024; 23:e13325. [PMID: 38532695 DOI: 10.1111/1541-4337.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
This manuscript presents a comprehensive review of high-resolution mass spectrometry in the field of food analysis and metabolomics. We have followed the historical evolution of metabolomics, its associated techniques and technologies, and its increasing role in food science and research. The review provides a critical comparison and synthesis of tentative identification guidelines proposed for over 15 years, offering a condensed resource for researchers in the field. We have also examined a wide range of recent metabolomics studies, showcasing various methodologies and highlighting key findings as a testimony of the versatility of the field and the possibilities it offers. In doing so, we have also carefully provided a compilation of the software tools that may be employed in this type of studies. The manuscript also explores the prospects of high-resolution mass spectrometry and metabolomics in food science. By covering the history, guidelines, applications, and tools of metabolomics, this review attempts to become a comprehensive guide for researchers in a rapidly evolving field.
Collapse
Affiliation(s)
- Francisco José Díaz-Galiano
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almería, Almería, Spain
| | - María Murcia-Morales
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almería, Almería, Spain
| | - Amadeo Rodríguez Fernández-Alba
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almería, Almería, Spain
| |
Collapse
|
22
|
Li Y, Qin Y, Wei S, Ling L, Ding CF. Differentiation of steroid isomers by steroid analogues adducted trapped ion mobility spectrometry-mass spectrometry. Anal Bioanal Chem 2024; 416:313-319. [PMID: 37940728 DOI: 10.1007/s00216-023-05019-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Steroids are one of the important indicators of health and disease. However, due to the high similarity of steroid structures, there are several potential obstacles in the differentiation of steroids, especially for their isomers. Herein, we described a trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) approach based on the steroid analogue adduction for isomer-specific identification of steroids. The application of dexamethasone (DEX) to form heterodimers with steroids enhanced the separation of their isomers in TIMS. Two isomer pairs including 17-hydroxyprogesterone/11-deoxycorticosterone and androsterone/epiandrosterone were successfully separated as the heterodimers with DEX by TIMS. The stability of DEX-adducted heterodimers is comparable with steroid dimers. Owing to the high separation efficiency and stability, the relative quantification of steroid isomers was demonstrated with the proposed method.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yujiao Qin
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Songchang Wei
- Ningbo No.6 Hospital, Ningbo, 315040, Zhejiang, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
23
|
Kartowikromo KY, Olajide OE, Hamid AM. Collision cross section measurement and prediction methods in omics. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4973. [PMID: 37620034 PMCID: PMC10530098 DOI: 10.1002/jms.4973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Omics studies such as metabolomics, lipidomics, and proteomics have become important for understanding the mechanisms in living organisms. However, the compounds detected are structurally different and contain isomers, with each structure or isomer leading to a different result in terms of the role they play in the cell or tissue in the organism. Therefore, it is important to detect, characterize, and elucidate the structures of these compounds. Liquid chromatography and mass spectrometry have been utilized for decades in the structure elucidation of key compounds. While prediction models of parameters (such as retention time and fragmentation pattern) have also been developed for these separation techniques, they have some limitations. Moreover, ion mobility has become one of the most promising techniques to give a fingerprint to these compounds by determining their collision cross section (CCS) values, which reflect their shape and size. Obtaining accurate CCS enables its use as a filter for potential analyte structures. These CCS values can be measured experimentally using calibrant-independent and calibrant-dependent approaches. Identification of compounds based on experimental CCS values in untargeted analysis typically requires CCS references from standards, which are currently limited and, if available, would require a large amount of time for experimental measurements. Therefore, researchers use theoretical tools to predict CCS values for untargeted and targeted analysis. In this review, an overview of the different methods for the experimental and theoretical estimation of CCS values is given where theoretical prediction tools include computational and machine modeling type approaches. Moreover, the limitations of the current experimental and theoretical approaches and their potential mitigation methods were discussed.
Collapse
Affiliation(s)
| | - Orobola E Olajide
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, USA
| | - Ahmed M Hamid
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
24
|
Konorev D, Bellamri M, Wu CF, Wu MT, Turesky RJ. High-Field Asymmetric Waveform Ion Mobility Spectrometry Analysis of Carcinogenic Aromatic Amines in Tobacco Smoke with an Orbitrap Tribrid Mass Spectrometer. Chem Res Toxicol 2023; 36:1419-1426. [PMID: 37462928 PMCID: PMC10530005 DOI: 10.1021/acs.chemrestox.3c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Smoking is a risk factor for bladder cancer (BC), although the specific chemicals responsible for BC remain uncertain. Considerable research has focused on aromatic amines (AAs), including o-toluidine (o-tol), o-anisidine (o-anis), 2-naphthylamine (2-NA), and 4-aminobiphenyl (4-ABP), which are linked to human BC based on elevated BC incidence in occupationally exposed factory workers. These AAs arise at nanogram levels per combusted cigarette. The unambiguous identification of AAs, particularly low-molecular-weight monocyclic AAs in tobacco smoke extracts, by liquid chromatography-mass spectrometry (LC-MS) is challenging due to their poor performance on reversed-phase columns and co-elution with isobaric interferences from the complex tobacco smoke matrix. We employed a tandem liquid-liquid and solid-phase extraction method to isolate AAs from the basic fraction of tobacco smoke condensate (TSC) and utilized high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to high-resolution accurate mass (HRAM) Orbitrap LC-MS2 to assay AAs in TSC. The employment of FAIMS greatly reduced sample complexity by removing precursor co-isolation interfering species at the MS1 scan stage, resulting in dramatically improved signal-to-noise of the precursor ions and cleaner, high-quality MS2 spectra for unambiguous identification and quantification of AAs in TSC. We demonstrate the power of LC/FAIMS/MS2 by characterizing and quantifying two low-molecular-weight carcinogenic AAs, o-tol and o-anis, in TSC, using stable isotopically labeled internal standards. These results demonstrate the power of FAIMS in trace-level analyses of AA carcinogens in the complex tobacco smoke matrix.
Collapse
Affiliation(s)
- Dmitri Konorev
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
- IDEXX Laboratories, Inc, 1 IDEXX Dr, Westbrook, ME 04092
| | - Medjda Bellamri
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Chia-Fang Wu
- International Master Program of Translational Medicine, National United University, Miaoli, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ming Tsang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
25
|
Majeed HA, Bos TS, Voeten RLC, Kranenburg RF, van Asten AC, Somsen GW, Kohler I. Trapped ion mobility mass spectrometry of new psychoactive substances: Isomer-specific identification of ring-substituted cathinones. Anal Chim Acta 2023; 1264:341276. [PMID: 37230720 DOI: 10.1016/j.aca.2023.341276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
New psychoactive substances (NPS) are synthetic derivatives of illicit drugs designed to mimic their psychoactive effects. NPS are typically not controlled under drug acts or their legal status depends on their molecular structure. Discriminating isomeric forms of NPS is therefore crucial for forensic laboratories. In this study, a trapped ion mobility spectrometry time-of-flight mass spectrometry (TIMS-TOFMS) approach was developed for the identification of ring-positional isomers of synthetic cathinones, a class of compounds representing two-third of all NPS seized in Europe in 2020. The optimized workflow features narrow ion-trapping regions, mobility calibration by internal reference, and a dedicated data-analysis tool, allowing for accurate relative ion-mobility assessment and high-confidence isomer identification. Ortho-, meta- and para-isomers of methylmethcathinone (MMC) and bicyclic ring isomers of methylone were assigned based on their specific ion mobilities within 5 min, including sample preparation and data analysis. The resolution of two distinct protomers per cathinone isomer added to the confidence in identification. The developed approach was successfully applied to the unambiguous assignment of MMC isomers in confiscated street samples. These findings demonstrate the potential of TIMS-TOFMS for forensic case work requiring fast and highly-confident assignment cathinone-drug isomers in confiscated samples.
Collapse
Affiliation(s)
- Hany A Majeed
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands
| | - Tijmen S Bos
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands
| | - Robert L C Voeten
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands
| | - Ruben F Kranenburg
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands; Forensic Laboratory, Unit Amsterdam, Dutch National Police, Kabelweg 25, 1014 BA, Amsterdam, the Netherlands; Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD, Amsterdam, the Netherlands
| | - Arian C van Asten
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands; Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD, Amsterdam, the Netherlands; Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, P.O. Box 94157, 1090 GD, Amsterdam, the Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands
| | - Isabelle Kohler
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands; Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, P.O. Box 94157, 1090 GD, Amsterdam, the Netherlands.
| |
Collapse
|
26
|
Crotti S, Menicatti M, Pallecchi M, Bartolucci G. Tandem mass spectrometry approaches for recognition of isomeric compounds mixtures. MASS SPECTROMETRY REVIEWS 2023; 42:1244-1260. [PMID: 34841547 DOI: 10.1002/mas.21757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/07/2023]
Abstract
The present review aims to collect the published literature pertaining the recognition of isobaric compounds (isomers or stereoisomers) using the features of tandem mass spectrometry (MS) experiments without any chromatographic separation or chemical modification (derivatization or isotopic enrichment) of the analytes. MS/MS methods possess high selectivity, wide dynamic range and high throughput capabilities. Generally, tandem MS has limited capability for distinguishing isomers that fragment similarly. However, some MS/MS methods have been developed and positively applied to isomers discrimination. Among the literature on this topic, the applications that fit on the review subject can be summarized as follow: (1) chiral discrimination by the kinetic method, (2) the use energy-resolved tandem mass spectra and the survival yield (SY) representation, (3) the kinetics evaluation of the ion-molecule interaction and (4) the postprocessing mathematical algorithm to resolve the isomers in MS/MS signal.
Collapse
Affiliation(s)
- Sara Crotti
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marta Menicatti
- Dipartimento Neurofarba, Università di Firenze, Florence, Italy
| | - Marco Pallecchi
- Dipartimento Neurofarba, Università di Firenze, Florence, Italy
| | | |
Collapse
|
27
|
Pachulicz R, Yu L, Jovcevski B, Bulone V, Pukala TL. Structural Analysis and Identity Confirmation of Anthocyanins in Brassica oleracea Extracts by Direct Injection Ion Mobility-Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2023; 3:200-207. [PMID: 37360034 PMCID: PMC10288604 DOI: 10.1021/acsmeasuresciau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/28/2023]
Abstract
Anthocyanins are a subclass of plant-derived flavonoids that demonstrate immense structural heterogeneity which is challenging to capture in complex extracts by traditional liquid chromatography-mass spectrometry (MS)-based approaches. Here, we investigate direct injection ion mobility-MS as a rapid analytical tool to characterize anthocyanin structural features in red cabbage (Brassica oleracea) extracts. Within a 1.5 min sample run time, we observe localization of structurally similar anthocyanins and their isobars into discrete drift time regions based upon their degree of chemical modifications. Furthermore, drift time-aligned fragmentation enables simultaneous collection of MS, MS/MS, and collisional cross-section data for individual anthocyanin species down to a low picomole scale to generate structural identifiers for rapid identity confirmation. We finally identify anthocyanins in three other Brassica oleracea extracts based on red cabbage anthocyanin identifiers to demonstrate our high-throughput approach. Direct injection ion mobility-MS therefore provides wholistic structural information on structurally similar, and even isobaric, anthocyanins in complex plant extracts, which can inform the nutritional value of a plant and bolster drug discovery pipelines.
Collapse
Affiliation(s)
- River
J. Pachulicz
- Department
of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Long Yu
- School
of Agriculture, Food and Wine, University
of Adelaide, Adelaide, SA 5005, Australia
| | - Blagojce Jovcevski
- Department
of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- School
of Agriculture, Food and Wine, University
of Adelaide, Adelaide, SA 5005, Australia
| | - Vincent Bulone
- School
of Agriculture, Food and Wine, University
of Adelaide, Adelaide, SA 5005, Australia
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova, University Centre, Stockholm 106 91, Sweden
| | - Tara L. Pukala
- Department
of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
28
|
Zhang Y, Zhang Z, Liu Y, Cai D, Gu J, Sun D. Differential Mobility Spectrometry-Tandem Mass Spectrometry with Multiple Ion Monitoring Coupled with in Source-Collision Induced Dissociation: A New Strategy for the Quantitative Analysis of Pharmaceutical Polymer Excipients in Rat Plasma. Molecules 2023; 28:4782. [PMID: 37375337 DOI: 10.3390/molecules28124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Polylactic acids (PLAs) are synthetic polymers composed of repeating lactic acid subunits. For their good biocompatibility, PLAs have been approved and widely applied as pharmaceutical excipients and scaffold materials. Liquid chromatography-tandem mass spectrometry is a powerful analytical tool not only for pharmaceutical ingredients but also for pharmaceutical excipients. However, the characterization of PLAs presents particular problems for mass spectrometry techniques. In addition to their high molecular weights and wide polydispersity, multiple charging and various adductions are intrinsic features of electrospray ionization. In the present study, a strategy combining of differential mobility spectrometry (DMS), multiple ion monitoring (MIM) and in-source collision-induced dissociation (in source-CID) has been developed and applied to the characterization and quantitation of PLAs in rat plasma. First, PLAs will be fragmented into characteristic fragment ions under high declustering potential in the ionization source. The specific fragment ions are then screened twice by quadrupoles to ensure a high signal intensity and low interference for mass spectrometry detection. Subsequently, DMS technique has been applied to further reduce the background noise. The appropriately chosen surrogate specific precursor ions could be utilized for the qualitative and quantitative analysis of PLAs, which provided results with the advantages of low endogenous interference, sufficient sensitivity and selectivity for bioassay. The linearity of the method was evaluated over the concentration range 3-100 μg/mL (r2 = 0.996) for PLA 20,000. The LC-DMS-MIM coupled with in source-CID strategy may contribute to the pharmaceutical studies of PLAs and the possible prospects of other pharmaceutical excipients.
Collapse
Affiliation(s)
- Yuyao Zhang
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhi Zhang
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun 130012, China
| | - Yingze Liu
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun 130012, China
| | - Deqi Cai
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dong Sun
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun 130012, China
| |
Collapse
|
29
|
Cajahuaringa S, Caetano DLZ, Zanotto LN, Araujo G, Skaf MS. MassCCS: A High-Performance Collision Cross-Section Software for Large Macromolecular Assemblies. J Chem Inf Model 2023; 63:3557-3566. [PMID: 37184925 PMCID: PMC10269586 DOI: 10.1021/acs.jcim.3c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 05/16/2023]
Abstract
Ion mobility mass spectrometry (IM-MS) techniques have become highly valued as a tool for structural characterization of biomolecular systems since they yield accurate measurements of the rotationally averaged collision cross-section (CCS) against a buffer gas. Despite its enormous potential, IM-MS data interpretation is often challenging due to the conformational isomerism of metabolites, lipids, proteins, and other biomolecules in the gas phase. Therefore, reliable and fast CCS calculations are needed to help interpret IM-MS data. In this work, we present MassCCS, a parallelized open-source code for computing CCS of molecules ranging from small organic compounds to massive protein assemblies at the trajectory method level of description using atomic and molecular buffer gas particles. The performance of the code is comparable to other available software for small molecules and proteins but is significantly faster for larger macromolecular assemblies. We performed extensive tests regarding accuracy, performance, and scalability with system size and number of CPU cores. MassCCS has proven highly accurate and efficient, with execution times under a few minutes, even for large (84.87 MDa) virus capsid assemblies with very modest computational resources. MassCCS is freely available at https://github.com/cces-cepid/massccs.
Collapse
Affiliation(s)
- Samuel Cajahuaringa
- Institute
of Computing, University of Campinas, Campinas, São Paulo 13083-852, Brazil
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
| | - Daniel L. Z. Caetano
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Leandro N. Zanotto
- Institute
of Computing, University of Campinas, Campinas, São Paulo 13083-852, Brazil
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
| | - Guido Araujo
- Institute
of Computing, University of Campinas, Campinas, São Paulo 13083-852, Brazil
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
| | - Munir S. Skaf
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
30
|
Santos-Fernandez M, Jeanne Dit Fouque K, Fernandez-Lima F. Integration of Trapped Ion Mobility Spectrometry and Ultraviolet Photodissociation in a Quadrupolar Ion Trap Mass Spectrometer. Anal Chem 2023; 95:8417-8422. [PMID: 37220214 PMCID: PMC10877586 DOI: 10.1021/acs.analchem.3c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
There is a growing demand for lower-cost, benchtop analytical instruments with complementary separation capabilities for the screening and characterization of biological samples. In this study, we report on the custom integration of trapped ion mobility spectrometry and ultraviolet photodissociation capabilities in a commercial Paul quadrupolar ion trap multistage mass spectrometer (TIMS-QIT-MSn UVPD platform). A gated TIMS operation allowed for the accumulation of ion mobility separated ion in the QIT, followed by a mass analysis (MS1 scan) or m/z isolation, followed by selected collision induced dissociation (CID) or ultraviolet photodissociation (UVPD) and a mass analysis (MS2 scan). The analytical potential of this platform for the analysis of complex and labile biological samples is illustrated for the case of positional isomers with varying PTM location of the histone H4 tryptic peptide 4-17 singly and doubly acetylated and the histone H3.1 tail (1-50) singly trimethylated. For all cases, a baseline ion mobility precursor molecular ion preseparation was obtained. The tandem CID and UVPD MS2 allowed for effective sequence confirmation as well as the identification of reporter fragment ions associated with the PTM location; a higher sequence coverage was obtained using UVPD when compared to CID. Different from previous IMS-MS implementation, the novel TIMS-QIT-MSn UVPD platform offers a lower-cost alternative for the structural characterization of biological molecules that can be widely disseminated in clinical laboratories.
Collapse
Affiliation(s)
- Miguel Santos-Fernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
31
|
Yang G, Zhang J, Dai R, Ma X, Huang C, Ren W, Ma X, Lu J, Zhao X, Renqing J, Zha L, Guo X, Chu M, La Y, Bao P, Liang C. Comparative Study on Nutritional Characteristics and Volatile Flavor Substances of Yak Milk in Different Regions of Gannan. Foods 2023; 12:foods12112172. [PMID: 37297417 DOI: 10.3390/foods12112172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
This study aimed to investigate the nutritional properties of yak milk in various areas of Gannan. The milk composition analyzer, automatic amino acid analyzer, and flavor analyzer were used to detect the conventional nutrients, amino acids, and volatile flavor substances of 249 yak milks in Meiren grassland, Xiahe grassland, and Maqu grassland (hereinafter referred to as Meiren yak, Xiahe yak, and Maqu yak) in the Gannan area. The results showed that the fat content of Meiren yak milk was significantly higher than that of Maqu yak and Xiahe yak (p < 0.05). The protein content of Meiren yak milk was significantly higher than that of Xiahe yak (p < 0.05), but not significantly different from that of Maqu yak (p > 0.05). The casein content in the milk of Maqu yak was significantly higher than that of Meiren yak and Xiahe yak (p < 0.05). There was no significant difference in the lactose content of yak milk in the three regions (p > 0.05). The content of glutamic acid in the milk of Meiren yak, Xiahe yak, and Maqu yak was noticeably high, which was 1.03 g/100 g, 1.07 g/100 g, and 1.10 g/100 g, respectively. The total amino acid (TAA) content was 4.78 g/100 g, 4.87 g/100 g, and 5.0 g/100 g, respectively. The ratios of essential amino acids (EAA) and total amino acids (TAA) in the milk of Meiren yak, Xiahe yak, and Maqu yak were 42.26%, 41.27%, and 41.39%, respectively, and the ratios of essential amino acids (EAA) and nonessential amino acids (NEAA) were 73.19%, 70.28%, and 70.61%, respectively. In the yak milk samples collected from three different regions, a total of 34 volatile flavor compounds were detected, including 10 aldehydes, five esters, six ketones, four alcohols, two acids, and seven others. The main flavor substances qualitatively obtained from Meiren yak milk were ethyl acetate, n-valeraldehyde, acetic acid, heptanal, and n-hexanal. Xiahe yak milk mainly contains ethyl acetate, isoamyl alcohol, n-valeraldehyde, heptanal, and ethyl butyrate. Maqu yak milk mainly contains ethyl acetate, n-valeraldehyde, isoamyl alcohol, heptanal, ethyl butyrate, and n-hexanal. Principal component analysis showed that the flavor difference between Xiahe yak and Maqu yak was small, while the flavor difference between Xiahe yak, Maqu yak, and Meiren yak was large. The findings of this research can serve as a foundation for the future advancement and application of yak milk.
Collapse
Affiliation(s)
- Guowu Yang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Juanxiang Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xiaoyong Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Chun Huang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Wenwen Ren
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Jianwei Lu
- Zogaidoma Township Animal Husbandry Station of Hezuo City, Hezuo 747003, China
| | - Xue Zhao
- Quality and Safety Inspection Center of Agricultural and Livestock Products in Hezuo, Hezuo 747099, China
| | - Ji Renqing
- Zogemanma Town Animal Husbandry and Veterinary Station, Hezuo 747099, China
| | - Lao Zha
- Zogaidoma Township Animal Husbandry Station of Hezuo City, Hezuo 747003, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| |
Collapse
|
32
|
Li J, Liu R, Gao W, Yu J, Tang K. Ion storage biases in the ion funnel trap of a Hybrid ion mobility spectrometer/time of flight mass spectrometer. Talanta 2023; 260:124621. [PMID: 37149942 DOI: 10.1016/j.talanta.2023.124621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
A detailed experimental characterization on the ion storage biases in an ion funnel trap, related to ion structure, charge state and RF voltage applied to the ion funnel trap, is reported by using both cytochrome C and ubiquitin samples. It was first observed experimentally that an unavoidable ion overflow would occur when the incoming ions exceeded the capacity of ion funnel trap. The conformers with extended structures would lose preferentially in the ion overflow process. Accordingly, a significant structural bias in the ion mobility spectrometry/time of flight mass spectrometry (IMS-TOF MS) spectrum was created, as the peak intensities for conformers with compact structures and extended structures would continuously increase and decrease, respectively, when the ion overflow time of the ion funnel trap was increased. Furthermore, the experimental results also showed that the effect of this ion structural bias was more significant when the RF voltage applied to the ion funnel trap was increased. In addition, an ion charge state bias in the ion funnel trap was also observed. The effect of the ion structural bias depends significantly on the specific charge state of the ions. For a given analyte, its lower charge state ions show a greater sensitivity to the ion structural bias than the higher charge state ones under the same ion funnel trap operating conditions. Therefore, it is extremely important to set a reasonable operation condition for the ion funnel trap to avoid ion storage biases in IMS-TOF MS.
Collapse
Affiliation(s)
- Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Rong Liu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Wenqing Gao
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Jiancheng Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
33
|
Sholokhova AY, Matyushin DD, Grinevich OI, Borovikova SA, Buryak AK. Intelligent Workflow and Software for Non-Target Analysis of Complex Samples Using a Mixture of Toxic Transformation Products of Unsymmetrical Dimethylhydrazine as an Example. Molecules 2023; 28:3409. [PMID: 37110641 PMCID: PMC10143382 DOI: 10.3390/molecules28083409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Unsymmetrical dimethylhydrazine (UDMH) is a widely used rocket propellant. Entering the environment or being stored in uncontrolled conditions, UDMH easily forms an enormous variety (at least many dozens) of transformation products. Environmental pollution by UDMH and its transformation products is a major problem in many countries and across the Arctic region. Unfortunately, previous works often use only electron ionization mass spectrometry with a library search, or they consider only the molecular formula to propose the structures of new products. This is quite an unreliable approach. It was demonstrated that a newly proposed artificial intelligence-based workflow allows for the proposal of structures of UDMH transformation products with a greater degree of certainty. The presented free and open-source software with a convenient graphical user interface facilitates the non-target analysis of industrial samples. It has bundled machine learning models for the prediction of retention indices and mass spectra. A critical analysis of whether a combination of several methods of chromatography and mass spectrometry allows us to elucidate the structure of an unknown UDMH transformation product was provided. It was demonstrated that the use of gas chromatographic retention indices for two stationary phases (polar and non-polar) allows for the rejection of false candidates in many cases when only one retention index is not enough. The structures of five previously unknown UDMH transformation products were proposed, and four previously proposed structures were refined.
Collapse
Affiliation(s)
- Anastasia Yu. Sholokhova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, GSP-1, 119071 Moscow, Russia
| | | | | | | | | |
Collapse
|
34
|
van Outersterp R, Oosterhout J, Gebhardt CR, Berden G, Engelke UFH, Wevers RA, Cuyckens F, Oomens J, Martens J. Targeted Small-Molecule Identification Using Heartcutting Liquid Chromatography-Infrared Ion Spectroscopy. Anal Chem 2023; 95:3406-3413. [PMID: 36735826 PMCID: PMC9933049 DOI: 10.1021/acs.analchem.2c04904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infrared ion spectroscopy (IRIS) can be used to identify molecular structures detected in mass spectrometry (MS) experiments and has potential applications in a wide range of analytical fields. However, MS-based approaches are often combined with orthogonal separation techniques, in many cases liquid chromatography (LC). The direct coupling of LC and IRIS is challenging due to the mismatching timescales of the two technologies: an IRIS experiment typically takes several minutes, whereas an LC fraction typically elutes in several seconds. To resolve this discrepancy, we present a heartcutting LC-IRIS approach using a setup consisting of two switching valves and two sample loops as an alternative to direct online LC-IRIS coupling. We show that this automated setup enables us to record multiple IR spectra for two LC-features from a single injection without degrading the LC-separation performance. We demonstrate the setup for application in drug metabolism research by recording six m/z-selective IR spectra for two drug metabolites from a single 2 μL sample of cell incubation extract. Additionally, we measure the IR spectra of two closely eluting diastereomeric biomarkers for the inborn error of metabolism pyridoxine-dependent epilepsy (PDE-ALDH7A1), which shows that the heartcutting LC-IRIS setup has good sensitivity (requiring ∼μL injections of ∼μM samples) and that the separation between closely eluting isomers is maintained. We envision applications in a range of research fields, where the identification of molecular structures detected by LC-MS is required.
Collapse
Affiliation(s)
- Rianne
E. van Outersterp
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jitse Oosterhout
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | | | - Giel Berden
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Udo F. H. Engelke
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ron A. Wevers
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Filip Cuyckens
- Drug
Metabolism & Pharmacokinetics, Janssen R&D, Beerse 2340, Belgium
| | - Jos Oomens
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands,van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Jonathan Martens
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands,
| |
Collapse
|
35
|
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Anal Chem 2023; 95:134-151. [PMID: 36625109 DOI: 10.1021/acs.analchem.2c02866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China.,Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
36
|
Wang J, Wang W, Zhang D, Wu F, Ding CF. Separation of Cinchona alkaloid Stereoisomers and Analogues by Ion Mobility and Chemical Theoretical Calculation. Forensic Chem 2023. [DOI: 10.1016/j.forc.2023.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Acter T, Lee S, Uddin N, Mow KM, Kim S. Characterization of petroleum‐related natural organic matter by ultrahigh‐resolution mass spectrometry. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Thamina Acter
- Department of Mathematical and Physical Sciences East West University Dhaka Bangladesh
| | - Seulgidaun Lee
- Department of Chemistry Kyungpook National University Daegu Republic of Korea
| | - Nizam Uddin
- Department of Nutrition and Food Engineering, Faculty of Allied Health Science Daffodil International University Dhaka Bangladesh
| | - Kamarum Monira Mow
- Department of Computer Science and Engineering East West University Dhaka Bangladesh
| | - Sunghwan Kim
- Department of Chemistry Kyungpook National University Daegu Republic of Korea
- Mass Spectrometry Based Convergence Research Institute Kyungpook National University Daegu Republic of Korea
- Green‐Nano Materials Research Center, Kyungpook National University Daegu Republic of Korea
| |
Collapse
|
38
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
39
|
Carbonell-Rozas L, Hernández-Mesa M, Righetti L, Monteau F, Lara FJ, Gámiz-Gracia L, Bizec BL, Dall'Asta C, García-Campaña AM, Dervilly G. Ion mobility-mass spectrometry to extend analytical performance in the determination of ergot alkaloids in cereal samples. J Chromatogr A 2022; 1682:463502. [PMID: 36174373 DOI: 10.1016/j.chroma.2022.463502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
This work evaluates the potential of ion mobility spectrometry (IMS) to improve the analytical performance of current liquid chromatography-mass spectrometry (LC-MS) workflows applied to the determination of ergot alkaloids (EAs) in cereal samples. Collision cross section (CCS) values for EA epimers are reported for the first time to contribute to their unambiguous identification. Additionally, CCS values have been inter-laboratory cross-validated and compared with CCS values predicted by machine-learning models. Slight differences were observed in terms of CCS values for ergotamine, ergosine and ergocristine and their corresponding epimers (from 3.3 to 4%), being sufficient to achieve a satisfactory peak-to-peak resolution for their unequivocal identification. A LC-travelling wave ion mobility (TWIM)-MS method has been developed for the analysis of EAs in barley and wheat samples. Signal-to-noise ratio (S/N) was improved between 2.5 and 4-fold compared to the analog LC-TOF-MS method. The quality of the extracted ion chromatograms was also improved by using IMS.
Collapse
Affiliation(s)
- Laura Carbonell-Rozas
- Oniris, INRAE, LABERCA, 44300 Nantes, France; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
| | - Maykel Hernández-Mesa
- Oniris, INRAE, LABERCA, 44300 Nantes, France; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | | | - Francisco J Lara
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
| | | | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
| | | |
Collapse
|
40
|
Paglia G, Smith AJ, Astarita G. Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. MASS SPECTROMETRY REVIEWS 2022; 41:722-765. [PMID: 33522625 DOI: 10.1002/mas.21686] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.
Collapse
Affiliation(s)
- Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Andrew J Smith
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
41
|
Delvaux A, Rathahao-Paris E, Alves S. Different ion mobility-mass spectrometry coupling techniques to promote metabolomics. MASS SPECTROMETRY REVIEWS 2022; 41:695-721. [PMID: 33492707 DOI: 10.1002/mas.21685] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metabolomics has become increasingly popular in recent years for many applications ranging from clinical diagnosis, human health to biotechnological questioning. Despite technological advances, metabolomic studies are still currently limited by the difficulty of identifying all metabolites, a class of compounds with great chemical diversity. Although lengthy chromatographic analyses are often used to obtain comprehensive data, many isobar and isomer metabolites still remain unresolved, which is a critical point for the compound identification. Currently, ion mobility spectrometry is being explored in metabolomics as a way to improve metabolome coverage, analysis throughput and isomer separation. In this review, all the steps of a typical workflow for untargeted metabolomics are discussed considering the use of an ion mobility instrument. An overview of metabolomics is first presented followed by a brief description of ion mobility instrumentation. The ion mobility potential for complex mixture analysis is discussed regarding its coupling with a mass spectrometer alone, providing gas-phase separation before mass analysis as well as its combination with different separation platforms (conventional hyphenation but also multidimensional ion mobility couplings), offering multidimensional separation. Various instrumental and analytical conditions for improving the ion mobility separation are also described. Finally, data mining, including software packages and visualization approaches, as well as the construction of ion mobility databases for the metabolite identification are examined.
Collapse
Affiliation(s)
- Aurélie Delvaux
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
| | - Estelle Rathahao-Paris
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, 91191, France
| | - Sandra Alves
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
| |
Collapse
|
42
|
Wen SS, Zhou HS, Zhu CS, Li P, Gao W. Direct infusion electrospray ionization-ion mobility-mass spectrometry for rapid metabolite marker discovery of medicinal Phellodendron Bark. J Pharm Biomed Anal 2022; 219:114939. [PMID: 35908412 DOI: 10.1016/j.jpba.2022.114939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Ion-mobility mass spectrometry (IM-MS) currently serves as a powerful tool for the structural identification of numerous biological compounds and small molecules. In this work, rapid metabolomic analysis of closely-related herbal medicines by direct injection ion mobility-quadrupole time-of-flight mass spectrometry (DI-IM-QTOF MS) was established. Phellodendron chinense Bark (PC) and Phellodendron amurense Bark (PA) were studied as a case. Thirty-three batches of PC and twenty-two batches of PA have been directly injected in electrospray ionization-IM-QTOF MS in positive mode. Without chromatographic separation, each run was completed within 3 min. After data alignment and statistical analysis, a total of seven chemical markers were found (p-value < 0.05, VIP > 1.00). Among them, the ion m/z 342.17 and m/z 356.18 present a single peak in the drift spectrum, respectively, but their drift time has a certain deviation compared with the pure substance of known compounds. In addition, the MS/MS spectra also confirmed that the single peak includes two chemical isomers. To investigate the composition ratio of individual isomers, the calibration curves of relative drift time (rDT) based on the standard superposition method were established, which were found to fit the least square regression. The ion [M]+m/z 342.17 was recognized consisting of magnoflorine (MAG) and phellodendrine (PHE), and their composition ratio in PA and PC samples was calculated. The results were compared with those obtained by the HPLC quantitative method, which produced equivalent quantification results. Our DI-IM-QTOF MS methodology provides an additional methodology for the relative quantification of unresolved isomers in drift tube IM-MS and offers DI-IM-QTOF MS based metabolomics.
Collapse
Affiliation(s)
- Shan-Shan Wen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hong-Shan Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Chuan-Sheng Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
43
|
Baquer G, Sementé L, Mahamdi T, Correig X, Ràfols P, García-Altares M. What are we imaging? Software tools and experimental strategies for annotation and identification of small molecules in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022:e21794. [PMID: 35822576 DOI: 10.1002/mas.21794] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) has become a widespread analytical technique to perform nonlabeled spatial molecular identification. The Achilles' heel of MSI is the annotation and identification of molecular species due to intrinsic limitations of the technique (lack of chromatographic separation and the difficulty to apply tandem MS). Successful strategies to perform annotation and identification combine extra analytical steps, like using orthogonal analytical techniques to identify compounds; with algorithms that integrate the spectral and spatial information. In this review, we discuss different experimental strategies and bioinformatics tools to annotate and identify compounds in MSI experiments. We target strategies and tools for small molecule applications, such as lipidomics and metabolomics. First, we explain how sample preparation and the acquisition process influences annotation and identification, from sample preservation to the use of orthogonal techniques. Then, we review twelve software tools for annotation and identification in MSI. Finally, we offer perspectives on two current needs of the MSI community: the adaptation of guidelines for communicating confidence levels in identifications; and the creation of a standard format to store and exchange annotations and identifications in MSI.
Collapse
Affiliation(s)
- Gerard Baquer
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Lluc Sementé
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Toufik Mahamdi
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Xavier Correig
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - Pere Ràfols
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - María García-Altares
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
44
|
Bogos LG, Pralea IE, Moldovan RC, Iuga CA. Indirect Enantioseparations: Recent Advances in Chiral Metabolomics for Biomedical Research. Int J Mol Sci 2022; 23:ijms23137428. [PMID: 35806433 PMCID: PMC9267260 DOI: 10.3390/ijms23137428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
Chiral metabolomics is starting to become a well-defined research field, powered by the recent advances in separation techniques. This review aimed to cover the most relevant advances in indirect enantioseparations of endogenous metabolites that were published over the last 10 years, including improvements and development of new chiral derivatizing agents, along with advances in separation methodologies. Moreover, special emphasis is put on exciting advances in separation techniques combined with mass spectrometry, such as chiral discrimination by ion-mobility mass spectrometry together with untargeted strategies for profiling of chiral metabolites in complex matrices. These advances signify a leap in chiral metabolomics technologies that will surely offer a solid base to better understand the specific roles of enantiomeric metabolites in systems biology.
Collapse
Affiliation(s)
- Luisa-Gabriela Bogos
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
| | - Radu-Cristian Moldovan
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
- Correspondence:
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| |
Collapse
|
45
|
Obeidat Y, Rawashdeh AM, Hammoudeh A, Al-Assi R, Dagamseh A, Qananwah Q. Acetone sensing in liquid and gas phases using cyclic voltammetry. Sci Rep 2022; 12:11010. [PMID: 35773395 PMCID: PMC9247076 DOI: 10.1038/s41598-022-15135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2022] [Indexed: 02/02/2023] Open
Abstract
This paper presents the use of cyclic voltammetry to measure acetone concentration in liquid and vapor forms at disposable screen-printed electrodes of platinum working electrode, platinum counter electrode, and silver/silver chloride reference electrode. The main characteristics of the acetone sensor including its linearity, sensitivity, reproducibility, and limit of detection (LOD) were studied by doing different experiments to test both liquid and vapor samples in the physiological range of 1 µM to 10 mM. The change in acetone concentration was monitored by comparing the lineshape of butterfly region before and after injecting the acetone sample in the baseline solution that contains 0.5 M H2SO4. The sensor was shown to have a good sensitivity, reproducibility, and a linear response with respect to the acetone concentration in both liquid and gas phases over a range of 1 µM to 10 mM with R2 > 0.97 and LOD of 0.1 µM. The system stability was improved by building a closed glass system to reduce the exchange of acetone with the surrounding air in an open environment. The closed system was tested using vapor samples and the error bars in the calibration curve were reduced to more than half of their values before using the closed system. The new system will be used extensively in future for an enzyme-based acetone sensor that will be used for diabetes monitoring.
Collapse
Affiliation(s)
- Yusra Obeidat
- grid.14440.350000 0004 0622 5497Electronic Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, 21163 Jordan
| | - Abdel Monem Rawashdeh
- grid.14440.350000 0004 0622 5497Department of Chemistry, Faculty of Sciences, Yarmouk University, P.O. Box 566, Irbid, Jordan
| | - Ayman Hammoudeh
- grid.14440.350000 0004 0622 5497Department of Chemistry, Faculty of Sciences, Yarmouk University, P.O. Box 566, Irbid, Jordan
| | - Rawan Al-Assi
- grid.14440.350000 0004 0622 5497Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, 21163 Jordan
| | - Ahmad Dagamseh
- grid.14440.350000 0004 0622 5497Electronic Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, 21163 Jordan
| | - Qasem Qananwah
- grid.14440.350000 0004 0622 5497Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, 21163 Jordan
| |
Collapse
|
46
|
Schmitz OJ, Meckelmann S, Wittenhofer P, Tštsch K. Supercritical Fluid Chromatography Coupled with Drift Time Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry as a Tool for Lipid Characterization of HepG2 Cells. LCGC EUROPE 2022. [DOI: 10.56530/lcgc.eu.xq5675w3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lipidomic studies are often conducted using shotgun mass spectrometry (MS) or reversed-phase liquid chromatography coupled with MS (LC–MS). However, chromatographic separation offers several advantages such as an additional identification parameter (retention time), lower ion suppression, and separation of isobaric species. In contrast, quantification is more difficult because ion suppression is not the same over the whole analysis, and as a consequence more standards are needed to compensate for this. Supercritical fluid chromatography (SFC) offers orthogonal separation compared to reversed-phase LC. While the separation of lipids in reversed-phase LC is mainly based on the length of the carbon chain and the number of double bonds, lipids in SFC are mainly separated according to their lipid classes, which simplifies quantification with standards. In this study, SFC coupled with drift time ion mobility quadrupole time-of-flight mass spectrometry (DTIMS-QTOF-MS)was used to characterize the HepG2 lipidome.
Collapse
|
47
|
Hu W, Meng Q, Lu Y, Xu Y, Nwadiuso OJ, Yu J, Liu W, Jing G, Li W, Liu W. Fourier Deconvolution Ion Mobility Spectrometry. Talanta 2022; 241:123270. [DOI: 10.1016/j.talanta.2022.123270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/22/2023]
|
48
|
Lindemann V, Schmidt J, Cramer B, Humpf HU. Detection of Mycotoxins in Highly Matrix-Loaded House-Dust Samples by QTOF-HRMS, IM-QTOF-HRMS, and TQMS: Advantages and Disadvantages. Anal Chem 2022; 94:4209-4217. [PMID: 35231175 PMCID: PMC8928151 DOI: 10.1021/acs.analchem.1c04254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 12/28/2022]
Abstract
The analysis of (trace) contaminants in environmental samples represents an important tool for exposure assessment and for the evaluation of potential risks to human health. Currently, mass spectrometric detection using triple quadrupole (TQMS) systems is the established method of choice. However, screening methods using high resolution mass spectrometry (HRMS) find increasing application as they provide advantages such as enhanced selectivity. A complex composition of environmental samples is known to have enormous effects on mass analyzers. The present work therefore compares the impact of a highly matrix-loaded sample material like house-dust on the performance of mass spectrometric detection of the emerging indoor contaminant group of mycotoxins by quadrupole time-of-flight (QTOF) and TQMS after ultrahigh-performance liquid chromatographic separation. Furthermore, the role of ionization efficiencies of different ion sources in instrument sensitivity was compared using an electrospray ionization source and a newly developed heated electrospray ion source (Bruker VIP-HESI) during QTOF experiments. Finally, it was evaluated whether an additional dimension of separation enables increased sensitivity in QTOF-HRMS detection by applying mycotoxins in house-dust to an (trapped) ion mobility spectrometry instrument. The sensitivity of the QTOF detection was positively influenced by the application of the VIP-HESI ion source, and overall HRMS instruments provided enhanced selectivity resulting in simplified data evaluation compared to the TQMS. However, all performed experiments revealed strong signal suppression due to matrix components. QTOF results showed more severe effects, enabling a more sensitive detection of mycotoxins in house-dust by applying TQMS detection.
Collapse
Affiliation(s)
- Viktoria Lindemann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Jessica Schmidt
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
49
|
Kim S, Kim D, Jung MJ, Kim S. Analysis of environmental organic matters by Ultrahigh-Resolution mass spectrometry-A review on the development of analytical methods. MASS SPECTROMETRY REVIEWS 2022; 41:352-369. [PMID: 33491249 DOI: 10.1002/mas.21684] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Owing to the increasing environmental and climate changes globally, there is an increasing interest in the molecular-level understanding of environmental organic compound mixtures, that is, the pursuit of complete and detailed knowledge of the chemical compositions and related chemical reactions. Environmental organic molecule mixtures, including those in air, soil, rivers, and oceans, have extremely complex and heterogeneous chemical compositions. For their analyses, ultrahigh-resolution and sub-ppb level mass accuracy, achievable using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), are important. FT-ICR MS has been successfully used to analyze complex environmental organic molecule mixtures such as natural, soil, particulate, and dissolved organic matter. Despite its success, many limitations still need to be overcome. Sample preparation, ionization, structural identification, chromatographic separation, and data interpretation are some key areas that have been the focus of numerous studies. This review describes key developments in analytical techniques in these areas to aid researchers seeking to start or continue investigations for the molecular-level understanding of environmental organic compound mixtures.
Collapse
Affiliation(s)
- Sungjune Kim
- Department of Chemistry, Kyungpook National University, Daegu, Korea
| | - Donghwi Kim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, Korea
| | - Maeng-Joon Jung
- Department of Chemistry, Kyungpook National University, Daegu, Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, Korea
- Mass Spectrometry Convergence Research Center and Green-Nano Materials Research Center, Daegu, Korea
| |
Collapse
|
50
|
Chen CH, Prabhu GRD, Yu KC, Elpa DP, Urban PL. Portable fizzy extraction ion-mobility spectrometry system. Anal Chim Acta 2022; 1204:339699. [DOI: 10.1016/j.aca.2022.339699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/29/2022]
|