1
|
Paz CV, Fereidooni M, Hamd W, Daher EA, Praserthdam P, Praserthdam S. Analysis of Ag-DP25/PET plasmonic nano-composites as a visible-light photocatalyst for wastewater treatment: Experimental/theoretical studies, and the DFT-MB degradation mechanism. ENVIRONMENTAL RESEARCH 2024; 252:119081. [PMID: 38714221 DOI: 10.1016/j.envres.2024.119081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/06/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
The development of polymeric-composites Agx%DP25-PET (x = 0,1,2,3) may significantly boost the potential application of Agx%DP25 (x = 0,1,2,3) photocatalytic powders. Producing large-scale nano-composites with hybrid-surfaces, that are also flexible materials and easy to employ in a variety of environments. A set of photocatalytic nan-composites embedded with the polymeric binder poly (acrylonitrile-co-butadiene)-dicarboxy terminated (C7H9N) were performed and evaluated for wastewater treatment applications. The results reveal that the flexible polymeric composites (Agx%DP25-PET, x = 0,1,2,3) have photocatalytic activity in aqua media to degrade methylene blue (MB) under visible-light. The addition of C7H9N to immobilize photocatalytic powders on the PET surface reduces photo-generated electron-hole recombination. The materials were characterized by HR-TEM, SEM/EDX, XRD, FT-IR, UV-Vis DRS and PL. The Agx%DP25-PET (x = 0,1,2,3) photocatalytic reactions exhibited productive discoloration/degradation rates, in both aerobic (AE) and anaerobic (AN) environments. The superior photodegradation of Ag2%DP25-PET was attributed to a combination of two effects: LSPR (localized surface plasmon resonance) and Ag-TiO2/environment affinities. The findings of molecular dynamics (MD) simulation and Fukui Function (FF) based on density functional theory (DFT) provide significant insight into the photocatalytic requirements for MB discoloration/degradation. The experimental/theoretical analysis aimed to offer an in-depth understanding of medium/surface interactions on decorated TiO2 materials, as well as how these interactions affect overall degradation behavior.
Collapse
Affiliation(s)
- C V Paz
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10300, Thailand.
| | - M Fereidooni
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10300, Thailand.
| | - W Hamd
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, P.O. Box 33, 1355, El-Koura, Lebanon.
| | - E A Daher
- Petrochemical Engineering Department, Faculty of Engineering III, CRSI, Lebanese University, Rafic Hariri Campus, 1533, Hadat, Lebanon; Laboratoire Chimie de la Matière Condensée de Paris LCMCP, Sorbonne Université, UPMC Paris 06, 4 Place Jussieu, 75005, Paris, France.
| | - P Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10300, Thailand.
| | - S Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10300, Thailand.
| |
Collapse
|
2
|
Paz-López CV, Fereidooni M, Praserthdam P, Praserthdam S, Farfán N, Marquez V. Comprehensive analysis (aerobic/anaerobic, molecular recognitions, band-position and degradation-mechanism) of undoped and Co-doped anatase-brookite - An experimental/theoretical evaluation of the less-studied TiO 2 mixed phase. ENVIRONMENTAL RESEARCH 2023; 229:115968. [PMID: 37121350 DOI: 10.1016/j.envres.2023.115968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
The molecular recognition (MRec) effect is required in the initial phase of organic reactions. The second stage involves molecular-orientations and molecular-orbitals energy-levels (MOrbE). The components of a reaction must be compatible in terms MRec and MOrbE. Therefore, the comprehension of photocatalytic systems applied in wastewater treatment will be improved if the MRec effect is also considered as an important factor. The purpose of this study is to provide a comprehensive understanding of the less studied anatase-brookite mixed-phase (doped and undoped). Anatase/brookite photocatalytic systems were evaluated utilizing experimental/theoretical approaches in H2O (aerobic/anaerobic) environments with Vis-light and the organic pollutant (OrPo) methyl orange (MO). The compatibility of MRec and MOrbE of anatase-brookite mixed-phase (with the different reactive system components) confirmed this is the optimal combination for photocatalytic application. Using the sol-gel method, AM-TiO2NP (amorphous), TiO2NP (crystalline), and TiO2NP-Co0.1 at% (crystalline Co-doped) anatase-brookite mixed-phase photocatalysts were obtained. The morphology and surface were characterized using XRD, BET, SEM, HR-TEM, FT-IR and XPS. Employing UV-vis DRS and PL, photo-response and electron-hole recombination were studied. LVS and Mott-Schottky plot were employed to determine photo-electrochemical activity. The results of TiO2NP photocatalytic degradation in both aerobic and anaerobic environments are remarkable. The results of molecular dynamics (MD) simulation and Fukui Function (FF) based on density functional theory (DFT) validate the remarkable photocatalytic MO degradation.
Collapse
Affiliation(s)
- C V Paz-López
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - M Fereidooni
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - P Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - S Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - N Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - V Marquez
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Wan Jusoh WZA, Abdul Rahman S, Ahmad AL, Mohd Mokhtar N. Data for molecular recognition between polyamide thin film composite on the polymeric subtract by molecular dynamic. Data Brief 2019; 24:103910. [PMID: 31193576 PMCID: PMC6535686 DOI: 10.1016/j.dib.2019.103910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 11/24/2022] Open
Abstract
This paper focus to examine the best molecular interaction between Polyamide Thin Film Composite (PA TFC) layers with different properties of the support membrane. The support membrane of Nylon 66 (N66) and Polyvinylidene fluoride (PVDF) was chosen to represent the hydrophilic and hydrophobic model respectively in the Molecular Dynamic (MD) simulation. The Condensed-Phase Optimized Molecular Potential for Atomistic Simulation Studies (COMPASS) force field was used with the total simulation runs were set 1000 picoseconds run production ensembles. The temperature and pressure set for both ensembles were 298 K and 1 atm respectively. The validity of our model densities data was check and calculated where the deviation must be less than 6%. The comparison between hydrophobic and hydrophilic of the support membrane data was examined by the distance and magnitude of intensity of the Radial Distribution Function (RDF's) trends.
Collapse
Affiliation(s)
- Wan Zulaisa Amira Wan Jusoh
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Sunarti Abdul Rahman
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
- Corresponding author.
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Nadzirah Mohd Mokhtar
- Faculty of Engineering Technology, Block A3, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
4
|
Hamerton I, Tang W, Anguita JV, Silva SRP. Towards the rational design of polymers using molecular simulation: Predicting the effect of cure schedule on thermo-mechanical properties for a cycloaliphatic amine-cured epoxy resin. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2013.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Yang W, Xi X, Shen X, Liu P, Hu Y, Cai K. Titania nanotubes dimensions-dependent protein adsorption and its effect on the growth of osteoblasts. J Biomed Mater Res A 2013; 102:3598-608. [DOI: 10.1002/jbm.a.35021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/23/2013] [Accepted: 10/23/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Weihu Yang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering; Chongqing University; Chongqing 400044 China
| | - Xingfeng Xi
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering; Chongqing University; Chongqing 400044 China
| | - Xinkun Shen
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering; Chongqing University; Chongqing 400044 China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering; Chongqing University; Chongqing 400044 China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering; Chongqing University; Chongqing 400044 China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering; Chongqing University; Chongqing 400044 China
| |
Collapse
|