1
|
Lotito V, Zambelli T. Heat: A powerful tool for colloidal particle shaping. Adv Colloid Interface Sci 2024; 331:103240. [PMID: 39024831 DOI: 10.1016/j.cis.2024.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Colloidal particles of spherical shape are important building blocks for nanotechnological applications. Materials with tailored physical properties can be directly synthesized from self-assembled particles, as is the case for colloidal photonic crystals. In addition, colloidal monolayers and multilayers can be exploited as a mask for the fabrication of complex nanostructures via a colloidal lithography process for applications ranging from optoelectronics to sensing. Several techniques have been adopted to modify the shape of both individual colloidal particles and colloidal masks. Thermal treatment of colloidal particles is an effective route to introduce colloidal particle deformation or to manipulate colloidal masks (i.e. to tune the size of the interstices between colloidal particles) by heating them at elevated temperatures above a certain critical temperature for the particle material. In particular, this type of morphological manipulation based on thermal treatments has been extensively applied to polymer particles. Nonetheless, interesting shaping effects have been observed also in inorganic materials, in particular silica particles. Due to their much less complex implementation and distinctive shaping effects in comparison to dry etching or high energy ion beam irradiation, thermal treatments turn out to be a powerful and competitive tool to induce colloidal particle deformation. In this review, we examine the physicochemical principles and mechanisms of heat-induced shaping as well as its experimental implementation. We also explore its applications, going from tailored masks for colloidal lithography to the fabrication of colloidal assemblies directly useful for their intrinsic optical, thermal and mechanical properties (e.g. thermal switches) and even to the synthesis of supraparticles and anisotropic particles, such as doublets.
Collapse
Affiliation(s)
- Valeria Lotito
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| |
Collapse
|
2
|
Zhao Y, Wu H, Yin R, Yu C, Matyjaszewski K, Bockstaller MR. Copolymer Brush Particle Hybrid Materials with "Recall-and-Repair" Capability. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6990-6997. [PMID: 37719032 PMCID: PMC10501442 DOI: 10.1021/acs.chemmater.3c01234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/01/2023] [Indexed: 09/19/2023]
Abstract
The effect of sequence structure on the self-healing and shape-memory properties of copolymer-tethered brush particle films was investigated and compared to linear copolymer analogs. Poly(n-butyl acrylate-co-methyl methacrylate), P(BA-co-MMA), and linear and brush analogs with controlled gradient and statistical sequence were synthesized by atom transfer radical polymerization (ATRP). The effect of sequence on self-healing in BA/MMA copolymer brush particle hybrids followed similar trends as for linear analogs. Most rapid restoration of mechanical properties was found for statistical copolymer sequence; an increase of the high Tg (MMA) component provided a path to raise the material's modulus while retaining self-heal ability. Creep testing revealed profound differences between linear and brush systems. While linear copolymers featured substantial viscous deformation when exposed to constant stress in the linear regime, brush analogs displayed minimal permanent deformation and featured shape restoration. The reduction of flow was interpreted to be a consequence of slow cooperative relaxation due to the complex microstructure of brush particle hybrids in which long-range motions are constrained through entanglements and slow-diffusing particle cores. The rubbery-like response imparts BA/MMA copolymer brush material systems concurrent "shape-memory" and "self-heal" capability. This ability to "recall-and-repair" could find application in the design of functional hybrid materials, for example, for soft robotics.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chenxi Yu
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Molecular Dynamics and Structure of Poly(Methyl Methacrylate) Chains Grafted from Barium Titanate Nanoparticles. Molecules 2022; 27:molecules27196372. [PMID: 36234912 PMCID: PMC9571223 DOI: 10.3390/molecules27196372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Core−shell nanocomposites comprising barium titanate, BaTiO3 (BTO), and poly(methyl methacrylate) (PMMA) chains grafted from its surface with varied grafting densities were prepared. BTO nanocrystals are high-k inorganic materials, and the obtained nanocomposites exhibit enhanced dielectric permittivity, as compared to neat PMMA, and a relatively low level of loss tangent in a wide range of frequencies. The impact of the molecular dynamics, structure, and interactions of the BTO surface on the polymer chains was investigated. The nanocomposites were characterized by broadband dielectric and vibrational spectroscopies (IR and Raman), transmission electron microscopy, differential scanning calorimetry, and nuclear magnetic resonance. The presence of ceramic nanoparticles in core–shell composites slowed down the segmental dynamic of PMMA chains, increased glass transition temperature, and concurrently increased the thermal stability of the organic part. It was also evidenced that, in addition to segmental dynamics, local β relaxation was affected. The grafting density influenced the self-organization and interactions within the PMMA phase, affecting the organization on a smaller size scale of polymeric chains. This was explained by the interaction of the exposed surface of nanoparticles with polymer chains.
Collapse
|
4
|
Sakib N, Koh YP, Simon SL. The absolute heat capacity of polymer grafted nanoparticles using fast scanning calorimetry*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nazam Sakib
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | - Yung P. Koh
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| | - Sindee L. Simon
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
5
|
Park G, Lee H, Hyun Sim J, Kim A, Kim M, Paeng K. Polymer Segmental Dynamics Near the Interface of Silica Particles in the Particle/Polymer Composites. J Colloid Interface Sci 2022; 629:256-264. [DOI: 10.1016/j.jcis.2022.08.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/04/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
|
6
|
Lettow JH, Yang H, Nealey PF, Rowan SJ. Effect of Graft Molecular Weight and Density on the Mechanical Properties of Polystyrene-Grafted Cellulose Nanocrystal Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James H. Lettow
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Han Yang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Paul F. Nealey
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
- Chemical and Engineering Sciences Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
7
|
Hansoge NK, Gupta A, White H, Giuntoli A, Keten S. Universal Relation for Effective Interaction between Polymer-Grafted Nanoparticles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nitin K. Hansoge
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208-3109, United States
| | - Agam Gupta
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Heather White
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Andrea Giuntoli
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208-3109, United States
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| |
Collapse
|
8
|
Kim YG, Wichaita W, Thérien-Aubin H. Influence of the Architecture of Soft Polymer-Functionalized Polymer Nanoparticles on Their Dynamics in Suspension. Polymers (Basel) 2020; 12:E1844. [PMID: 32824574 PMCID: PMC7465671 DOI: 10.3390/polym12081844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023] Open
Abstract
The behavior of nanogels in suspension can be dramatically affected by the grafting of a canopy of end-tethered polymer chains. The architecture of the interfacial layer, defined by the grafting density and length of the polymer chains, is a crucial parameter in defining the conformation and influencing the dynamics of the grafted chains. However, the influence of this architecture when the core substrate is itself soft and mobile is complex; the dynamics of the core influences the dynamics of the tethered chains, and, conversely, the dynamics of the tethered chains can influence the dynamics of the core. Here, poly(styrene) (PS) particles were functionalized with poly(methyl acrylate) (PMA) chains and swollen in a common solvent. NMR relaxation reveals that the confinement influences the mobility of the grafted chain more prominently for densely grafted short chains. The correlation time associated with the relaxation of the PMA increased by more than 20% when the grafting density increased for short chains, but for less than 10% for long chains. This phenomenon is likely due to the steric hindrance created by the close proximity to the rigid core and of the neighboring chains. More interestingly, a thick layer of a densely grafted PMA canopy efficiently increases the local mobility of the PS cores, with a reduction of the correlation time of more than 30%. These results suggest an interplay between the dynamics of the core and the dynamics of the canopy.
Collapse
Affiliation(s)
| | | | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55131 Mainz, Germany; (Y.-G.K.); (W.W.)
| |
Collapse
|
9
|
Nguyen HK, Kawaguchi D, Tanaka K. Effect of Molecular Architecture on Conformational Relaxation of Polymer Chains at Interfaces. Macromol Rapid Commun 2020; 41:e2000096. [PMID: 32459031 DOI: 10.1002/marc.202000096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Indexed: 11/10/2022]
Abstract
Dynamics of polymer chains near an interface with an inorganic material are believed to strongly affect the physical properties of polymers in nanocomposites and thin films. An effect of molecular architecture on the conformational relaxation behavior of polystyrene (PS) chains at the quartz interface using sum-frequency generation spectroscopy is reported here. The relaxation dynamics of chains in direct contact with the quartz interface is slower with a star-shaped architecture than that with its linear counterpart. The extent of the delay becomes more pronounced with increasing number of arms. This can be explained in terms of the superior interfacial activity to the quartz surface for the star-shaped PS.
Collapse
Affiliation(s)
- Hung K Nguyen
- Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Daisuke Kawaguchi
- Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka, 819-0395, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
10
|
Sakib N, Koh YP, Huang Y, Mongcopa KIS, Le AN, Benicewicz BC, Krishnamoorti R, Simon SL. Thermal and Rheological Analysis of Polystyrene-Grafted Silica Nanocomposites. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nazam Sakib
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yung P. Koh
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yucheng Huang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29201, United States
| | - Katrina Irene S. Mongcopa
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Amy N. Le
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Brian C. Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29201, United States
| | - Ramanan Krishnamoorti
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Sindee L. Simon
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
11
|
Hansoge NK, Keten S. Effect of Polymer Chemistry on Chain Conformations in Hairy Nanoparticle Assemblies. ACS Macro Lett 2019; 8:1209-1215. [PMID: 35651164 DOI: 10.1021/acsmacrolett.9b00526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Matrix-free, polymer-grafted nanoparticles, called hairy nanoparticle assemblies (aHNPs), have proven advantageous over traditional nanocomposites, as good dispersion and structural order can be achieved. Recent studies have shown that conformational changes in the polymer structure can lead to significant enhancements in the mechanical properties of aHNPs. To quantify how polymer chemistry affects the chain conformations in aHNPs, here we present a comparative analysis based on coarse-grained molecular dynamics simulations. Specifically, we compare the chain conformations in an anisotropic cellulose nanoparticle grafted to four common polymers with distinct chemical groups, fragility, and segmental structures, that is, poly(methyl methacrylate) (PMMA), polystyrene (PS), polycarbonate (PC), and polybutadiene (PB). We observe that semiflexible glassy polymers such as PMMA and PS have a higher critical chain length (Ncr), the transition point where the polymer conformation changes from concentrated to semidilute brush regime. Flexible rubbery polymers (PB) can overcome the Ncr barrier at relatively lower molecular weights. We have used theoretical scaling laws based on Daoud-Cotton theory to uncover a direct correlation between empirical constants and physical parameters, such as persistence length and monomer excluded volume. Furthermore, we carried out a systematic study to understand the role of backbone rigidity and side-group size of polymer, and it revealed that the backbone rigidity significantly affects Ncr but the side-group size doesn't seem to have an appreciable effect on Ncr. We find that normalization of the monomer radial distribution curves using Ncr and other key molecular parameters collapses the curves for 110 distinct model aHNP systems studied. Our work paves the way for systematic quantification of these molecular design parameters to accelerate the design of polymer-grafted nanoparticle assemblies in combination with universal scaling relationships.
Collapse
Affiliation(s)
- Nitin K. Hansoge
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208-3109, United States
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208-3109, United States
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| |
Collapse
|
12
|
Abstract
Grafting polymers to nanoparticle surfaces influences properties from the conformation of the polymer chains to the dispersion and assembly of nanoparticles within a polymeric material. Recently, a small body of work has begun to address the question of how grafting polymers to a nanoparticle surface impacts chain dynamics, and the resulting physical properties of a material. This Review discusses recent work that characterizes the structure and dynamics of polymers that are grafted to nanoparticles and opportunities for future research. Starting from the case of a single polymer chain attached to a nanoparticle core, this Review follows the structure of the chains as grafting density increases, and how this structure slows relaxation of polymer chains and affects macroscopic material properties.
Collapse
Affiliation(s)
- Michael J A Hore
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, USA.
| |
Collapse
|
13
|
Ethier JG, Hall LM. Structure and Entanglement Network of Model Polymer-Grafted Nanoparticle Monolayers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01373] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jeffrey G. Ethier
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Zhang Z, Tam KC, Sèbe G, Wang X. Convenient characterization of polymers grafted on cellulose nanocrystals via SI-ATRP without chain cleavage. Carbohydr Polym 2018; 199:603-609. [DOI: 10.1016/j.carbpol.2018.07.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/25/2022]
|
15
|
Lenart WR, Hore MJ. Structure–property relationships of polymer-grafted nanospheres for designing advanced nanocomposites. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2017.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Zuo B, Zhang S, Niu C, Zhou H, Sun S, Wang X. Grafting density dominant glass transition of dry polystyrene brushes. SOFT MATTER 2017; 13:2426-2436. [PMID: 28150841 DOI: 10.1039/c6sm02790c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effects of the grafting densities (σp), molecular weights (Mn) and thicknesses of dry polystyrene (PS) brushes on their glass transition temperature (T) were investigated by ellipsometry. The results show that T strongly depends on the grafting density of the PS brushes. The T of the PS brushes with σp > 0.30 increases with decreasing Mn (or brush thickness) and is mainly dominated by entropic effects, in which the grafted chains are highly extended along the film thickness direction resulting in a sharp reduction in configurational entropy. The T of PS brushes with σp < 0.30 decreases with decreasing Mn (or brush thickness) which is mainly dominated by surface effects. For intermediate-density brushes (σp = 0.30), T becomes independent of Mn or brush thickness. The reason for this grafting density dependence of T is attributed to the transition of the PS brush conformation from mushroom-to-brush.
Collapse
Affiliation(s)
- Biao Zuo
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shasha Zhang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Chen Niu
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hao Zhou
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shuzheng Sun
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
17
|
Askar S, Li L, Torkelson JM. Polystyrene-Grafted Silica Nanoparticles: Investigating the Molecular Weight Dependence of Glass Transition and Fragility Behavior. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00079] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shadid Askar
- Department of Chemical and Biological Engineering and ‡Department of
Materials Science
and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lingqiao Li
- Department of Chemical and Biological Engineering and ‡Department of
Materials Science
and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John M. Torkelson
- Department of Chemical and Biological Engineering and ‡Department of
Materials Science
and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Kawata Y, Yamamoto T, Kihara H, Yamamura Y, Saito K, Ohno K. Three Gel States of Colloidal Composites Consisting of Polymer-Brush-Afforded Silica Particles and a Nematic Liquid Crystal with Distinct Viscoelastic and Optical Properties. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29649-29657. [PMID: 27726324 DOI: 10.1021/acsami.6b07893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Colloidal composites consisting of polymer-brush-afforded silica particles (P-SiPs) and a nematic liquid crystal (LC) exhibited three gel states with distinct viscoelastic and/or optical properties depending on temperature: (1) opaque hard gel, (2) translucent hard gel, and (3) translucent soft gel. We demonstrated that the transitions of the optical property and the hardness of the gels were due to the phase transition of the LC matrix and the glass transition of the grafted polymers of P-SiPs, respectively. We then revealed that the gelation (the formation of the translucent soft gel) was caused by the phase separation of P-SiPs and LC matrix in an isotropic phase based on spinodal decomposition. In addition, the particle concentration and molecular weight of the grafted polymer of P-SiPs were observed to significantly affect the elastic moduli and thermal stability of the composite gels. By the addition of an azobenzene derivative into an LC matrix, we achieved photochemical switching of the transparency of the composites based on the photoinduced phase transition of LCs, while keeping self-supporting ability of the composite gel.
Collapse
Affiliation(s)
- Yuki Kawata
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahiro Yamamoto
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hideyuki Kihara
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yasuhisa Yamamura
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Kohji Ohno
- Institute for Chemical Research, Kyoto University , Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
19
|
Koerner H, Opsitnick E, Grabowski CA, Drummy LF, Hsiao MS, Che J, Pike M, Person V, Bockstaller MR, Meth JS, Vaia RA. Physical aging and glass transition of hairy nanoparticle assemblies. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23931] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hilmar Koerner
- Materials and Manufacturing Directorate; Air Force Research Laboratory, Wright Patterson Air Force Base; Ohio 45433-7750
| | - Elizabeth Opsitnick
- Materials and Manufacturing Directorate; Air Force Research Laboratory, Wright Patterson Air Force Base; Ohio 45433-7750
| | - Christopher A. Grabowski
- Materials and Manufacturing Directorate; Air Force Research Laboratory, Wright Patterson Air Force Base; Ohio 45433-7750
| | - Larry F. Drummy
- Materials and Manufacturing Directorate; Air Force Research Laboratory, Wright Patterson Air Force Base; Ohio 45433-7750
| | - Ming-Siao Hsiao
- Materials and Manufacturing Directorate; Air Force Research Laboratory, Wright Patterson Air Force Base; Ohio 45433-7750
| | - Justin Che
- Materials and Manufacturing Directorate; Air Force Research Laboratory, Wright Patterson Air Force Base; Ohio 45433-7750
| | - Megan Pike
- Materials and Manufacturing Directorate; Air Force Research Laboratory, Wright Patterson Air Force Base; Ohio 45433-7750
| | - Vernecia Person
- Department of Chemistry; Clark Atlanta University; SW Atlanta Georgia 30314
| | - Michael R. Bockstaller
- Department of Materials Science and Engineering; Carnegie Mellon University; Pittsburgh Pennsylvania 15213
| | - Jeff S. Meth
- DuPont Central Research and Development; E.I. DuPont De Nemours; Wilmington Delaware 19803
| | - Richard A. Vaia
- Materials and Manufacturing Directorate; Air Force Research Laboratory, Wright Patterson Air Force Base; Ohio 45433-7750
| |
Collapse
|
20
|
Lan T, Torkelson JM. Substantial spatial heterogeneity and tunability of glass transition temperature observed with dense polymer brushes prepared by ARGET ATRP. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Khabibullin A, Mastan E, Matyjaszewski K, Zhu S. Surface-Initiated Atom Transfer Radical Polymerization. CONTROLLED RADICAL POLYMERIZATION AT AND FROM SOLID SURFACES 2015. [DOI: 10.1007/12_2015_311] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Gowneni S, Ramanjaneyulu K, Basak P. Polymer-nanocomposite brush-like architectures as an all-solid electrolyte matrix. ACS NANO 2014; 8:11409-11424. [PMID: 25380402 DOI: 10.1021/nn504472v] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herein, we report on polymer-nanocomposites with brush-like architectures and evaluate their feasibility as an all-solid electrolyte matrix supporting Li(+)-ion conduction. Showcased as a first example in the domain of electrolyte research, the study probes several key factors, such as (i) core morphology, (ii) surface modifiers/functionality, (iii) grafting length, and (iv) density of the brushes, and determines their role on the overall electrochemical properties of these nanostructured organic-inorganic hybrids. Nanostructured titania was synthesized via wet-chemical approaches using either controlled hydrolysis or hydrothermal methods. Exercising suitable control on reaction parameters led to well-defined morphologies/phases, such as nanoparticles, nanospindles, nanourchins, nanorods or nanotubes, in either anatase, rutile or mixed forms. Covalent anchoring on titania nanostructures was achieved using dopamine, gallic acid and glycerol as small organic moieties. A one-pot process of priming the available surface functional groups postmodification with isocyanate chemistry was followed by grafting polyethylene glycol monomethyl ethers of desired chain lengths. Finally, complexation with lithium salt yielded electrolyte compositions where the ethylene oxide (EO) fractions aid in ion-solvation with ease. The synthesized materials were characterized in detail employing XRD, TEM, DRS-UV, FTIR, micro-Raman, TG-DTA and DSC at each stage to confirm the products and ascertain the physicochemical properties. Comprehensive evaluation using temperature-step electrochemical impedance spectroscopy (EIS) of these brush-like nanocomposites provided crucial leads toward establishing a plausible physical model for the system and understanding the mechanism of ion transport in these all-solid matrices. The preliminary results on ionic conductivity (σ) obtained for some of the compositions are estimated to be within the range of ∼10(-4) to 10(-5) S cm(-1) in the temperature window of the study that holds excellent promise for further improvement.
Collapse
Affiliation(s)
- Soujanya Gowneni
- Nanomaterials Laboratory, Inorganic and Physical Chemistry Division, Council of Scientific & Industrial Research - Indian Institute of Chemical Technology (CSIR-IICT), CSIR - Network Institutes for Solar Energy (CSIR-NISE), Academy of Scientific and Innovative Research (AcSIR) , Hyderabad-500 007, Andhra Pradesh, India
| | | | | |
Collapse
|
23
|
Hui CM, Dang A, Chen B, Yan J, Konkolewicz D, He H, Ferebee R, Bockstaller MR, Matyjaszewski K. Effect of Thermal Self-Initiation on the Synthesis, Composition, and Properties of Particle Brush Materials. Macromolecules 2014. [DOI: 10.1021/ma501319m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Alei Dang
- School
of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | | | | | | | | | | | | | | |
Collapse
|