1
|
Avalos E, Teramoto T, Hirai Y, Yabu H, Nishiura Y. Controlling the Formation of Polyhedral Block Copolymer Nanoparticles: Insights from Process Variables and Dynamic Modeling. ACS OMEGA 2024; 9:17276-17288. [PMID: 38645350 PMCID: PMC11025090 DOI: 10.1021/acsomega.3c10302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/23/2024]
Abstract
This study delves into the formation of nanoscale polyhedral block copolymer particles (PBCPs) exhibiting cubic, octahedral, and variant geometries. These structures represent a pioneering class that has never been fabricated previously. PBCP features distinct variations in curvature on the outer surface, aligning with the edges and corners of polyhedral shapes. This characteristic sharply contrasts with previous block copolymers (BCPs), which displayed a smooth spherical surface. The emergence of these cornered morphologies presents an intriguing and counterintuitive phenomenon and is linked to process parameters, such as evaporation rates and initial concentration, while keeping other variables constant. Using a system of coupled Cahn-Hillard (CCH) equations, we uncover the mechanisms driving polyhedral particle formation, emphasizing the importance of controlling relaxation parameters for shape variable u and microphase separation v. This unconventional approach, differing from traditional steepest descent method, allows for precise control and diverse polyhedral particle generation. Accelerating the shape variable u proves crucial for expediting precipitation and aligns with experimental observations. Employing the above theoretical model, we achieve shape predictions for particles and the microphase separation within them, which overcomes the limitations of ab initio computations. Additionally, a numerical stability analysis discerns the transient nature versus local minimizer characteristics. Overall, our findings contribute to understanding the complex interplay between process variables and the morphology of polyhedral BCP nanoparticles.
Collapse
Affiliation(s)
- Edgar Avalos
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takashi Teramoto
- Faculty
of Data Science, Kyoto Women’s University, 35 Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto 605-8501, Japan
| | - Yutaro Hirai
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiroshi Yabu
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yasumasa Nishiura
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Research
Center of Mathematics for Social Creativity, Research Institute for
Electronic Science, Hokkaido University, N12W7, Kita-Ward, Mid-Campus Open
Laboratory Building No. 2, Sapporo 060-0812, Japan
| |
Collapse
|
2
|
Chen K, Wang F, Liu M, Wang X. Tunable helical structures formed by blending
ABC
triblock copolymers and C homopolymers in nanopores. POLYM INT 2021. [DOI: 10.1002/pi.6253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ka Chen
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
| | - Feng Wang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
| | - Meijiao Liu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
3
|
Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Self-assembly of tiling-forming ABC star triblock copolymers in cylindrical nanotubes: A study of self-consistent field theory. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Avalos E, Higuchi T, Teramoto T, Yabu H, Nishiura Y. Frustrated phases under three-dimensional confinement simulated by a set of coupled Cahn-Hilliard equations. SOFT MATTER 2016; 12:5905-5914. [PMID: 27337660 DOI: 10.1039/c6sm00429f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We numerically study a set of coupled Cahn-Hilliard equations as a means to find morphologies of diblock copolymers in three-dimensional spherical confinement. This approach allows us to find a variety of energy minimizers including rings, tennis balls, Janus balls and multipods among several others. Phase diagrams of confined morphologies are presented. We modify the size of the interface between microphases to control the number of holes in multipod morphologies. Comparison to experimental observation by transmission electron microtomography of multipods in polystyrene-polyisoprene diblock copolymers is also presented.
Collapse
Affiliation(s)
- Edgar Avalos
- WPI-Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takeshi Higuchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takashi Teramoto
- Department of Mathematics, Asahikawa Medical University, 2-1-1-1, Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Hiroshi Yabu
- WPI-Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yasumasa Nishiura
- WPI-Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
6
|
Morphologies and phase diagrams of ABC star triblock copolymers in cylindrical nanotubes with homogenous and patterned surfaces. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Effect of curvature on properties of diblock copolymers confined between two coaxial cylinders: 2. Domain adjustment in a curved bilayer. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Xiao X, Zhao B, Ren Y. Effect of curvature on properties of diblock copolymers confined between two coaxial cylinders: 1. Layer thickness of a curved monolayer. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
He X, Zou Z, Kan D, Liang H. Self-assembly of diblock copolymer confined in an array-structure space. J Chem Phys 2015; 142:101912. [PMID: 25770501 DOI: 10.1063/1.4907532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The combination of top-down and bottom-up technologies is an effective method to create the novel nanostructures with long range order in the field of advanced materials manufacture. In this work, we employed a polymeric self-consistent field theory to investigate the pattern formation of diblock copolymer in a 2D confinement system designed by filling pillar arrays with various 2D shapes such as squares, rectangles, and triangles. Our simulation shows that in such confinement system, the microphase structure of diblock copolymer strongly depends on the pitch, shape, size, and rotation of the pillar as well as the surface field of confinement. The array structures can not only induce the formation of new phase patterns but also control the location and orientation of pattern structures. Finally, several methods to tune the commensuration and frustration of array-structure confinement are proposed and examined.
Collapse
Affiliation(s)
- Xuehao He
- Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhixiang Zou
- Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Di Kan
- Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Haojun Liang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Self-assembly of linear triblock copolymers under cylindrical nanopore confinements. CHINESE JOURNAL OF POLYMER SCIENCE 2012. [DOI: 10.1007/s10118-013-1183-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Li S, Qiu W, Zhang L, Liang H. Nanostructures and phase diagrams of ABC star triblock copolymers in pore geometries. J Chem Phys 2012; 136:124906. [DOI: 10.1063/1.3697764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
LI Z, JIA X, ZHANG J, SUN Z, LU Z. DESIGNING NANO-STRUCTURES OF BLOCK COPOLYMERS <I>VIA</I> COMPUTER SIMULATION. ACTA POLYM SIN 2011. [DOI: 10.3724/sp.j.1105.2011.11102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Guo X, Yuan S, Yang S, Lv K, Yuan S. Mesoscale simulation on patterned core–shell nanosphere model for amphiphilic block copolymer. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.03.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
|
15
|
Han Y, Cui J, Jiang W. Effect of Polydispersity on the Self-Assembly Structure of Diblock Copolymers under Various Confined States: A Monte Carlo Study. Macromolecules 2008. [DOI: 10.1021/ma800702f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanyuan Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, and Graduate School of the Chinese Academy of Sciences
| | - Jie Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, and Graduate School of the Chinese Academy of Sciences
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, and Graduate School of the Chinese Academy of Sciences
| |
Collapse
|
16
|
Wang Z, Li B, Jin Q, Ding D, Shi AC. Self-Assembly of Cylinder-Forming ABA Triblock Copolymers under Cylindrical Confinement. MACROMOL THEOR SIMUL 2008. [DOI: 10.1002/mats.200800010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Wang Z, Li B, Jin Q, Ding D, Shi AC. Simulated Annealing Study of Self-Assembly of Symmetric ABA Triblock Copolymers Confined in Cylindrical Nanopores. MACROMOL THEOR SIMUL 2008. [DOI: 10.1002/mats.200700069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Yu B, Li B, Jin Q, Ding D, Shi AC. Self-Assembly of Symmetric Diblock Copolymers Confined in Spherical Nanopores. Macromolecules 2007. [DOI: 10.1021/ma071624t] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Yu
- College of Physics and Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR China, and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Baohui Li
- College of Physics and Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR China, and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Qinghua Jin
- College of Physics and Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR China, and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Datong Ding
- College of Physics and Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR China, and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - An-Chang Shi
- College of Physics and Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR China, and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
19
|
Xiao X, Huang Y, Liu H, Hu Y. Morphology Transition of Block Copolymers under Curved Confinement. MACROMOL THEOR SIMUL 2007. [DOI: 10.1002/mats.200700041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|