1
|
Wu T, Wang Z, Yin F, Wang W, Yi Z. Isoporous Membranes by the Symmetric Triblock Copolymer: A Strategy to Improve the Mechanical Strength without Sharply Changing the Pore Size and Permselectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37073-37086. [PMID: 38958638 DOI: 10.1021/acsami.4c07113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Isoporous membranes produced from diblock copolymers commonly display a poor mechanical property that shows many negative impacts on their separation application. It is theoretically predicted that dense films produced from symmetric triblock copolymers show much stronger mechanical properties than those of homologous diblock copolymers. However, to the best of our knowledge, symmetric triblock copolymers have rarely been fabricated into isoporous membranes before, and a full understanding of separation as well as mechanical properties of membranes prepared from triblock copolymers and homologous diblock copolymers has not been conducted, either. In this work, a cleavable symmetric triblock copolymer with polystyrene as the side block and poly(4-vinylpyridine) (P4VP) as the middle block was synthesized and designed by the RAFT polymerization using the symmetric chain transfer agent, which located at the center of polymer chains and could be removed to produce homologous diblock copolymers with half-length while having the same composition as that found in triblock copolymers. The self-assembly of these two copolymers in thin films and casting solutions was first investigated, observing that they displayed similar self-organized structures under these two conditions. When fabricated into isoporous membranes, they showed similar pore sizes (5-7% difference) and comparable rejection performance (∼10% difference). However, isoporous membranes produced from triblock copolymers showed significantly improved mechanical strength and higher toughness (2-10 times larger) as evidenced by the compacting resistance, strain-stress determination, and nanoindentation testing, suggesting the unique and novel structure-performance relationship in the isoporous membranes produced from symmetric triblock copolymers. The above finding will guide the way to fabricate mechanically robust isoporous membranes without notably changing the separation performance from rarely used symmetric triblock copolymers, which can be synthesized by the controlled polymerization as facilely as that found for diblock copolymers.
Collapse
Affiliation(s)
- Tao Wu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou 313000, China
| | - Zixiong Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengjie Yin
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenjing Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhuan Yi
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou 313000, China
| |
Collapse
|
2
|
Hua L, Wang X. Polymorphic Crystallization Behavior of a Poly(butylene adipate) Midblock within a Poly(L-lactide-butylene adipate-L-lactide) Triblock Copolymer. Polymers (Basel) 2022; 14:polym14224902. [PMID: 36433028 PMCID: PMC9696281 DOI: 10.3390/polym14224902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
New biodegradable aliphatic PLLA-PBA-PLLA copolymers with soft poly(butylene adipate) (PBA) and hard poly(l-lactide) (PLLA) building blocks were synthesized via ring-opening polymerization (ROP). Proton nuclear magnetic resonance (1HNMR) was utilized to confirm the volume fraction of PBA (fPBA) within PLLA-PBA-PLLA. It was found that a PBA midblock (PBA-mid) within PLLA-PBA-PLLA-s (PLLA-PBA-PLLA triblock copolymer with a short PLLA block length) might display lamellar domain structure. However, PBA-mid within PLLA-PBA-PLLA-l (PLLA-PBA-PLLA triblock copolymer with a long PLLA block length) might locate itself as a nanoscale cylindrical domain surrounded by a PLLA continuous phase. Polymorphic crystals of PBA-mid within the PLLA-PBA-PLLA copolymers were formed after melt crystallization at the given temperatures, which were studied by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) analysis. According to the WAXD and DSC analyses, it was interesting to find that the α-type crystal of PBA-mid was favorable to develop in the lower temperature region regardless of the state (crystallization or amorphous) of the PLLA component. Additionally, when the PLLA component was held in its amorphous state, it was easier for PBA-mid within the PLLA-PBA-PLLA copolymers to transform from the metastable β-form crystal to the stable α-form crystal. Furthermore, polarized optical microscopy (POM) photos provided direct evidence of the polymorphic crystals of PBA-mid within PLLA-PBA-PLLAs.
Collapse
Affiliation(s)
- Lei Hua
- Institute of Polymer Science and Engineering, TongJi Zhejiang College, Jiaxing 314051, China
- Jiaxing Key Laboratory of High-Performance and Functional Materials in Civil and Environmental Engineering, Tongji Zhejiang College, Jiaxing 314051, China
- Correspondence: ; Tel.: +86-573-8287-8742
| | - Xiaodong Wang
- Institute of Polymer Science and Engineering, TongJi Zhejiang College, Jiaxing 314051, China
| |
Collapse
|
3
|
Chen K, Wang F, Liu M, Wang X. Tunable helical structures formed by blending
ABC
triblock copolymers and C homopolymers in nanopores. POLYM INT 2021. [DOI: 10.1002/pi.6253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ka Chen
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
| | - Feng Wang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
| | - Meijiao Liu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
4
|
Gupta S, Chokshi P. Diblock copolymer templated self-assembly of grafted nanoparticles under circular pore confinement. SOFT MATTER 2020; 16:3522-3535. [PMID: 32215433 DOI: 10.1039/d0sm00124d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Geometrical confinement plays an important role in generating novel molecular organization arising out of structural frustration and confinement-induced entropy loss. In the present study, we perform self-consistent mean-field theoretical calculations to examine a mixture of a diblock copolymer and polymer grafted nanoparticles confined in a cylindrical nanopore. The two-dimensional analysis is aimed at constructing the equilibrium nanostructures decorated with particles in an ordered manner. The rich variety of ordered mesophases of the diblock copolymer under confinement provide a template to achieve the self-assembly of nanoparticles in a selective domain. The localization behavior of nanoparticles under confinement is found to be qualitatively different from that in a bulk system. In particular, for the concentric lamellar phase the particles tend to localize predominantly in the region of greater curvature within the curved lamella. The incorporation of grafted nanoparticles also results in a transition in ordered phases. Various equilibrium morphologies are observed depending upon the degree of confinement, particle loading, density of grafted segments and selectivity of the particle core to the polymeric species. The ordering of particles and the ensuing equilibrium nanostructures are analyzed. The comprehensive understanding of the self-assembly behavior of particles enables one to design novel nanomaterials with desirable material properties.
Collapse
Affiliation(s)
- Supriya Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| | - Paresh Chokshi
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| |
Collapse
|
5
|
Zhang D, Shao Z, Hu W, Xu Y. Self-assembly of (A2B2)5 multigraft block copolymer: The length scale and phase transition. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Wang C, Xu Y, Li W, Lin Z. Rich Variety of Three-Dimensional Nanostructures Enabled by Geometrically Constraining Star-like Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7908-7916. [PMID: 27389278 DOI: 10.1021/acs.langmuir.6b01904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The influence of star-like architecture on phase behavior of star-like block copolymer under cylindrical confinement differs largely from the bulk (i.e., nonconfinement). A set of intriguing self-assembled morphologies and the corresponding phase diagrams of star-like (AB)f diblock copolymers with different numbers of arms f (i.e., f = 3, 9, 15, and 21) in four scenarios (ϕA = 0.3 and V0 > 0; ϕA = 0.3 and V0 < 0; ϕA = 0.7 and V0 > 0; and ϕA = 0.7 and V0 < 0 (where ϕA is the volume fraction of A block) and V0 < 0 and V0 > 0 represent that the pore wall of cylindrical confinement prefers the inner A block (i.e., A-preferential) and B block (i.e., B-preferential), respectively) were for the first time scrutinized by employing the pseudospectral method of self-consistent mean-field theory. Surprisingly, a new nanoscopic phase, that is, perforated-lamellae-on-cylinder (denoted PC), was observed in star-like (AB)3 diblock copolymer at ϕA = 0.3 and V0 > 0. With a further increase in f, a single lamellae (denoted L1) was found to possess a larger phase region. Under the confinement of A-preferential wall (i.e., V0 < 0) at ϕA = 0.3, PC phase became metastable and its free energy increased as f increased. Quite intriguingly, when ϕA = 0.7 and V0 > 0, where an inverted cylinder was formed in bulk, the PC phase became stable, and its free energy decreased as f increased, suggesting the propensity to form PC phase under this condition. Moreover, in stark contrast to the phase transition of C1 → L1 → PC (C1, a single cylindrical microdmain) at ϕA = 0.3 and V0 > 0, when subjected to the A-preferential wall (ϕA = 0.7), a different phase transition sequence (i.e., C1 → PC → L1) was identified due to the formation of a double-layer structure. On the basis of our calculations, the influence of star-like architecture on (AB)f diblock copolymer under the imposed cylindrical confinement, particularly the shift of the phase boundaries as a function of f, was thoroughly understood. These self-assembled nanostructures may hold the promise for applications as lithographic templates for nanowires, photonic crystals, and nanotechnology.
Collapse
Affiliation(s)
- Chao Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Yuci Xu
- Faculty of Materials Science and Chemical Engineering, Ningbo University , Ningbo, Zhejiang 315211, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymer, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Self-assembly of tiling-forming ABC star triblock copolymers in cylindrical nanotubes: A study of self-consistent field theory. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Avalos E, Higuchi T, Teramoto T, Yabu H, Nishiura Y. Frustrated phases under three-dimensional confinement simulated by a set of coupled Cahn-Hilliard equations. SOFT MATTER 2016; 12:5905-5914. [PMID: 27337660 DOI: 10.1039/c6sm00429f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We numerically study a set of coupled Cahn-Hilliard equations as a means to find morphologies of diblock copolymers in three-dimensional spherical confinement. This approach allows us to find a variety of energy minimizers including rings, tennis balls, Janus balls and multipods among several others. Phase diagrams of confined morphologies are presented. We modify the size of the interface between microphases to control the number of holes in multipod morphologies. Comparison to experimental observation by transmission electron microtomography of multipods in polystyrene-polyisoprene diblock copolymers is also presented.
Collapse
Affiliation(s)
- Edgar Avalos
- WPI-Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takeshi Higuchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takashi Teramoto
- Department of Mathematics, Asahikawa Medical University, 2-1-1-1, Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Hiroshi Yabu
- WPI-Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yasumasa Nishiura
- WPI-Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
9
|
Morphologies and phase diagrams of ABC star triblock copolymers in cylindrical nanotubes with homogenous and patterned surfaces. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Chang HY, Chen YF, Sheng YJ, Tsao HK. Blending-induced helical morphologies of confined linear triblock copolymers. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Aydin F, Uppaladadium G, Dutt M. Harnessing Nanoscale Confinement to Design Sterically Stable Vesicles of Specific Shapes via Self-Assembly. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b02239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fikret Aydin
- Department of Chemical and
Biochemical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Geetartha Uppaladadium
- Department of Chemical and
Biochemical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Meenakshi Dutt
- Department of Chemical and
Biochemical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
12
|
Block Co-Polymers for Nanolithography: Rapid Microwave Annealing for Pattern Formation on Substrates. Polymers (Basel) 2015. [DOI: 10.3390/polym7040592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
13
|
Yu B, Deng J, Li B, Shi AC. Patchy nanoparticles self-assembled from linear triblock copolymers under spherical confinement: a simulated annealing study. SOFT MATTER 2014; 10:6831-6843. [PMID: 25082632 DOI: 10.1039/c4sm00967c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The self-assembly of linear ABC triblock copolymers confined in spherical nanopores is studied using a simulated annealing technique. Morphological phase diagrams as a function of the pore diameter, the selectivity of the pore-wall to the terminal blocks, and the copolymer composition are constructed. A variety of patchy nanoparticles and multiple morphological transitions are identified. Janus nanoparticles, which can be regarded as particles with one patch, are observed inside small nanopores. With increasing the pore diameter, the number of patches on a nanoparticle surface increases from one to two, four, five, six, and seven. The size of each patch increases periodically. The number of patches also increases with increasing the wall selectivity. The distribution of the patches on the surface of a given particle is highly symmetric. The interior structures of the patchy nanoparticles and the morphological transition are investigated by calculating the bridging fraction, the mean square end-to-end distance and the average contact number between different components. A series of entropy-driven morphological transitions is predicted. Furthermore, it is found that the overall patchy morphology is largely controlled by the volume fraction of the middle B-block, while the internal structure is largely controlled by the volume fraction ratio of the two terminal blocks. Our study demonstrates that the size of nanopores, the pore-wall selectivity, and the copolymer composition could be utilized as effective means to tune the structure and properties of the anisotropic nanoparticles.
Collapse
Affiliation(s)
- Bin Yu
- Department of Physics and Material Science, Tianjin Normal University, Tianjin, 300387, China.
| | | | | | | |
Collapse
|
14
|
Hao QH, Miao B, Song QG, Niu XH, Liu TJ. Phase behaviors of sphere-forming triblock copolymers confined in nanopores: A dynamic density functional theory study. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.06.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Jiang WB, Lang WC, Li SB, Wang XH. Morphologies of Core-Shell-Cylinder-Forming ABC Star Triblock Copolymers in Nanopores. CHINESE J CHEM PHYS 2014. [DOI: 10.1063/1674-0068/27/03/337-342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
16
|
Borah D, Shaw MT, Holmes JD, Morris MA. Sub-10 nm feature size PS-b-PDMS block copolymer structures fabricated by a microwave-assisted solvothermal process. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2004-2012. [PMID: 23421383 DOI: 10.1021/am302830w] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Block copolymer (BCP) microphase separation at surfaces might enable the generation of substrate features in a scalable, manufacturable, bottom-up fashion provided that pattern structure, orientation, alignment can be strictly controlled. A further requirement is that self-assembly takes place within periods of the order of minutes so that continuous manufacturingprocesses do not require lengthy pretreatments and sample storageleading to contamination and large facility costs. We report here microwave-assisted solvothermal (in toluene environments) self-assembly and directed self-assembly of a very low molecular weight cylinder-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS) BCP on planar and patterned silicon nitride (Si3N4) substrates. Good pattern ordering was achieved in the order of minutes. Factors affecting BCP self-assembly, notably anneal time and temperature were studied and seen to have significant effects. Graphoepitaxy to direct self-assembly in the BCP yielded promising results producing BCP patterns with long-range translational alignment commensurate with the pitch period of the topographic patterns. This rapid BCP ordering method is consistent with the standard thermal/solvent anneal processes.
Collapse
Affiliation(s)
- Dipu Borah
- Materials Chemistry Section, Department of Chemistry, University College Cork, College Road, Cork, Ireland
| | | | | | | |
Collapse
|
17
|
Self-assembly of linear triblock copolymers under cylindrical nanopore confinements. CHINESE JOURNAL OF POLYMER SCIENCE 2012. [DOI: 10.1007/s10118-013-1183-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Li S, Qiu W, Zhang L, Liang H. Nanostructures and phase diagrams of ABC star triblock copolymers in pore geometries. J Chem Phys 2012; 136:124906. [DOI: 10.1063/1.3697764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
|
20
|
Xiao X, Huang Y, Feng J, Liu H, Hu Y. Microphase Separation of a Diblock Copolymer Dispersed in Nanorod Arrays Grafted on a Plate: A Monte Carlo Study. MACROMOL THEOR SIMUL 2011. [DOI: 10.1002/mats.201000064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Molecular Thermodynamic Models for Fluids of Chain-Like Molecules, Applications in Phase Equilibria and Micro-Phase Separation in Bulk and at Interface. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-380985-8.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Pinna M, Hiltl S, Guo X, Böker A, Zvelindovsky AV. Block copolymer nanocontainers. ACS NANO 2010; 4:2845-2855. [PMID: 20496954 DOI: 10.1021/nn901853e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Using cell dynamics computer simulation, we perform a systematic study of thin block copolymer films around a nanoparticle. Lamellar-, cylinder-, and sphere-forming block copolymers are investigated with respect to different film thicknesses, particle radii, and boundary conditions at the film interfaces. The obtained structures include standing lamellae and cylinders, "onions", cylinder "knitting balls", "golf ball", layered spherical, "virus"-like and mixed morphologies with T-junctions and U-type defects. The kinetics of the structure formation and difference with planar thin films are discussed. Our simulations suggest that novel porous nanocontainers can be formed by the coating of a sacrificial nanobead by a block copolymer layer with a well-controlled nanostructure. In addition, first scanning force microscopy experiments on a model system reveal surface structures similar to those predicted by our simulations.
Collapse
Affiliation(s)
- Marco Pinna
- Computational Physics Group, University of Central Lancashire, Preston PR1 2HE, United Kingdom.
| | | | | | | | | |
Collapse
|
23
|
Fu W, Jiang R, Chen T, Lin H, Sun P, Li B, Jin Q, Ding D. Evolution of interphase in styrene-butadiene block copolymers as revealed by 1H solid-state NMR: Effect of temperature and molecular architecture. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|