1
|
Zhao W, Zou W, Liu F, Zhou F, Altun NE. Molecular dynamics simulations of the solubility and conformation change of chitosan grafted polyacrylamide: Impact of grafting rate. J Mol Graph Model 2024; 126:108660. [PMID: 37956531 DOI: 10.1016/j.jmgm.2023.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Graft modification is an effective approach to improve the water solubility and molecular weight of chitosan. This work investigated the effect of grafting rate on water solubility of chitosan-grafted polyacrylamide (Chi-g-PAM) using molecular dynamics simulations. The intramolecular and intermolecular interaction between Chi-g-PAM with the grafting rate of 100%-250% and water together with the conformation change were analyzed by radial distribution function (RDF), radius of gyration, solvation free energy (ΔGSFE), mean square displacement, diffusion coefficient and shear viscosity. The results showed that the intramolecular hydrogen bonding of Chi-g-PAM was the dominant factor affecting its water solubility. While the grafting rate of Chi-g-PAM increased from 100% to 250%, the RDF of Chi-g-PAM decreased from 5.39 to 3.57 between O-H at 2.0 Å and 2.60 to 1.30 between N-H at 2.1 Å. The interaction between Chi-g-PAM and water increased with grafting rate as the absolute value of ΔGSFE for Chi-g-PAM increased from 432.917 kcal/mol to 858.749 kcal/mol. The solubility of Chi-g-PAM in acidic solution was much better than that of Chi-g-PAM in aqueous solution. Our work on the fundamental insights into the effect of grafted molecular structure of chitosan-based copolymer on its solubility will benefit the development of environmentally friendly chitosan-based flocculants.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of High-Efficient Mining and Safety of Metal Mines of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, China
| | - Wenjie Zou
- State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, China; School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Fengyang Liu
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fang Zhou
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430073, China
| | - N Emre Altun
- Middle East Technical University, Mining Engineering Department, Ankara, Turkey
| |
Collapse
|
2
|
Demeter M, Negrescu AM, Calina I, Scarisoreanu A, Albu Kaya M, Micutz M, Dumitru M, Cimpean A. Synthesis, Physicochemical Characteristics, and Biocompatibility of Multi-Component Collagen-Based Hydrogels Developed by E-Beam Irradiation. J Funct Biomater 2023; 14:454. [PMID: 37754868 PMCID: PMC10532005 DOI: 10.3390/jfb14090454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Herein, three different recipes of multi-component hydrogels were synthesized by e-beam irradiation. These hydrogels were obtained from aqueous polymer mixtures in which different proportions of bovine collagen gel, sodium carboxymethylcellulose (CMC), poly(vinylpyrrolidone), chitosan, and poly(ethylene oxide) were used. The cross-linking reaction was carried out exclusively by e-beam cross-linking at 25 kGy, a dose of irradiation sufficient both to complete the cross-linking reaction and effective for hydrogel sterilization. The hydrogels developed in this study were tested in terms of physical and chemical stability, mechanical, structural, morphological, and biological properties. They are transparent, maintain their structure, are non-adhesive when handling, and most importantly, especially from the application point of view, have an elastic structure. Likewise, these hydrogels possessed different swelling degrees and expressed rheological behavior characteristic of soft solids with permanent macromolecular network. Morphologically, collagen- and CMC based-hydrogels showed porous structures with homogeneously distributed pores assuring a good loading capacity with drugs. These hydrogels were investigated by indirect and direct contact studies with Vero cell line (CCL-81™, ATCC), demonstrating that they are well tolerated by normal cells and, therefore, showed promising potential for further use in the development of drug delivery systems based on hydrogels.
Collapse
Affiliation(s)
- Maria Demeter
- National Institute for Lasers, Plasma and Radiation Physics (INFLPR), Atomiştilor 409, 077125 Măgurele, Romania; (M.D.); (M.D.)
| | - Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.M.N.); (A.C.)
| | - Ion Calina
- National Institute for Lasers, Plasma and Radiation Physics (INFLPR), Atomiştilor 409, 077125 Măgurele, Romania; (M.D.); (M.D.)
| | - Anca Scarisoreanu
- National Institute for Lasers, Plasma and Radiation Physics (INFLPR), Atomiştilor 409, 077125 Măgurele, Romania; (M.D.); (M.D.)
| | - Mădălina Albu Kaya
- Department of Collagen, Division Leather and Footwear Research Institute, National Research and Development Institute for Textiles and Leather (INCDTP), 93 Ion Minulescu Str., 031215 Bucharest, Romania;
| | - Marin Micutz
- Department of Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania;
| | - Marius Dumitru
- National Institute for Lasers, Plasma and Radiation Physics (INFLPR), Atomiştilor 409, 077125 Măgurele, Romania; (M.D.); (M.D.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.M.N.); (A.C.)
| |
Collapse
|
3
|
Preparation of compatibilizer PDABA-g-PEPA-O and its application in NR/MCC composites and analysis of compatibilization mechanism. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
4
|
Poddar D, Majood M, Singh A, Mohanty S, Jain P. Chitosan-coated pore wall polycaprolactone three-dimensional porous scaffolds fabricated by porogen leaching method for bone tissue engineering: a comparative study on blending technique to fabricate scaffolds. Prog Biomater 2021; 10:281-297. [PMID: 34825346 PMCID: PMC8633273 DOI: 10.1007/s40204-021-00172-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/06/2021] [Indexed: 01/21/2023] Open
Abstract
One of the significant challenges in the fabrication of scaffolds for tissue engineering lies in the direct interaction of bioactive agents with cells in the scaffolds matrix, which curbs the effectiveness of bioactive agents resulting in diminished cell recognition and attachment ability of the scaffolds. Here, three-dimensional porous scaffolds were fabricated using polycaprolactone (PCL) and chitosan, by two approaches, i.e., blending and surface coating to compare their overall effectiveness. Blended scaffolds (Chi-PCL) were compared with the scaffolds fabricated using surface coating technique, where chitosan was coated on the pore wall of PCL scaffolds (C-PCL). The C-PCL exhibited a collective improvement in bioactivities of the stem cell on the scaffold, because of the cell compatible environment provided by the presence of chitosan over the scaffolds interface. The C-PCL showed the enhanced cell attachment and proliferation behavior of the scaffolds along with two-fold increase in hemolysis compatibility compared to Chi-PCL. Furthermore, the compression strength in C-PCL increased by 24.52% and 8.62% increase in total percentage porosity compared to Chi-PCL was attained. Along with this, all the bone markers showed significant upregulation in C-PCL scaffolds, which supported the surface coating technique over the conventional methods, even though the pore size of C-PCL was compromised by 19.98% compared with Chi-PCL.
Collapse
Affiliation(s)
- Deepak Poddar
- Department of Chemistry, Netaji Subhas Institute of Technology, University of Delhi, Dwarka Sector 3, New Delhi, 110078 India
| | - Misba Majood
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Ankita Singh
- Department of Chemistry, Netaji Subhas Institute of Technology, University of Delhi, Dwarka Sector 3, New Delhi, 110078 India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas Institute of Technology, University of Delhi, Dwarka Sector 3, New Delhi, 110078 India
| |
Collapse
|
5
|
Effect of ZnO-based nanophotocatalyst on degradation of aniline. J Mol Model 2021; 27:92. [PMID: 33619651 DOI: 10.1007/s00894-021-04710-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
In this research, a zinc oxide/copper oxide/graphene oxide (ZnO/CuO/GO) nanophotocatalyst was synthesized for photodegradation of aniline as a pollutant, upon exposure to ultraviolet light (UV). Three variables including initial aniline concentration, the nanophotocatalyst dosage, and pH were designed. The statistical test and optimal conditions were determined. The consequences specified that the optimum values of pH, initial aniline concentration, the dosage of nanophotocatalyst, and the reaction time were 6, 150 ppm, 1 g/L, and 3 h, respectively. The obtained results revealed that the photodegradation of aniline was enhanced with doping zinc oxide and CuO on the graphene oxide. Under optimal conditions, 97% photodegradation of aniline was observed. The mechanism of aniline degradation with nanophotocatalyst was evaluated by molecular dynamic (MD) graphs. The interactions between nanophotocatalysts and aniline were considered by energy, density graph.
Collapse
|
6
|
Optimal loading of omecamtiv mecarbil by chitosan: A comprehensive and comparative molecular dynamics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
One Step e-Beam Radiation Cross-Linking of Quaternary Hydrogels Dressings Based on Chitosan-Poly(Vinyl-Pyrrolidone)-Poly(Ethylene Glycol)-Poly(Acrylic Acid). Int J Mol Sci 2020; 21:ijms21239236. [PMID: 33287433 PMCID: PMC7731230 DOI: 10.3390/ijms21239236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 01/26/2023] Open
Abstract
We report on the successful preparation of wet dressings hydrogels based on Chitosan-Poly(N-Vinyl-Pyrrolidone)-Poly(ethylene glycol)-Poly(acrylic acid) and Poly(ethylene oxide) by e-beam cross-linking in weakly acidic media, to be used for rapid healing and pain release of infected skin wounds. The structure and compositions of hydrogels investigated according to sol-gel and swelling studies, network parameters, as well as FTIR and XPS analyses showed the efficient interaction of the hydrogel components upon irradiation, maintaining the bonding environment while the cross-linking degree increasing with the irradiation dose and the formation of a structure with the mesh size in the range 11–67 nm. Hydrogels with gel fraction above 85% and the best swelling properties in different pH solutions were obtained for hydrogels produced with 15 kGy. The hydrogels are stable in the simulated physiological condition of an infected wound and show appropriate moisture retention capability and the water vapor transmission rate up to 272.67 g m−2 day−1, to ensure fast healing. The hydrogels proved to have a significant loading capacity of ibuprofen (IBU), being able to incorporate a therapeutic dose for the treatment of severe pains. Simultaneously, IBU was released up to 25% in the first 2h, having a release maximum after 8 h.
Collapse
|
8
|
Luo X, Wang S, Xu S, Lang M. Relevance of the Polymeric Prodrug and Its Drug Loading Efficiency: Comparison between Computer Simulation and Experiment. MACROMOL THEOR SIMUL 2019. [DOI: 10.1002/mats.201900026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xueli Luo
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Shenchun Wang
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Sishi Xu
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Meidong Lang
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
9
|
Fe/starch nanoparticle - Pseudomonas aeruginosa: Bio-physiochemical and MD studies. Int J Biol Macromol 2018; 117:51-61. [DOI: 10.1016/j.ijbiomac.2018.04.191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/15/2018] [Accepted: 04/30/2018] [Indexed: 12/23/2022]
|
10
|
Takhulee A, Takahashi Y, Vao-soongnern V. Molecular simulation and experimental studies of the miscibility of polylactic acid/polyethylene glycol blends. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1174-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Mirhosseini MM, Haddadi-Asl V, Zargarian SS. Fabrication and characterization of hydrophilic poly(ε-caprolactone)/pluronic P123 electrospun fibers. J Appl Polym Sci 2016. [DOI: 10.1002/app.43345] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- M. M. Mirhosseini
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| | - V. Haddadi-Asl
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| | - S. Sh. Zargarian
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
12
|
Mirhosseini MM, Haddadi-Asl V, Zargarian SS. Fabrication and characterization of polymer–ceramic nanocomposites containing pluronic F127 immobilized on hydroxyapatite nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra19499k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis and embedding of HA-F127 nanoparticles into a PCL/P123 nanofibrous scaffold plus molecular dynamics simulation of pristine and modified HA/polymer interactions.
Collapse
Affiliation(s)
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology
- Amirkabir University of Technology
- Tehran
- Iran
| | - Seyed Shahrooz Zargarian
- Department of Polymer Engineering and Color Technology
- Amirkabir University of Technology
- Tehran
- Iran
| |
Collapse
|
13
|
Razmimanesh F, Amjad-Iranagh S, Modarress H. Molecular dynamics simulation study of chitosan and gemcitabine as a drug delivery system. J Mol Model 2015; 21:165. [PMID: 26044358 DOI: 10.1007/s00894-015-2705-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022]
Abstract
By using molecular dynamics (MD) simulation, biodegradable biopolymer chitosan as a carrier for the drug gemcitabine was investigated and the effect of three initial drug concentrations (10, 40, and 80%) on its loading efficiency was studied. Then water was added to the systems of drug and biopolymer and the effects of water on the interactions of drug and chitosan and on the drug loading efficiency were examined. From the results it was found that the maximum loading of the drug occurred at 40% of the drug concentration. The radial distribution function calculations indicated that in the absence of water molecules, the drug molecules were located at shorter distance from chitosan and the loading efficiency of the drug in these systems was higher.
Collapse
Affiliation(s)
- Fariba Razmimanesh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, Iran
| | | | | |
Collapse
|
14
|
Wu C. Coarse-grained molecular dynamics simulations of stereoregular poly(methyl methacrylate)/poly(vinyl chloride) blends. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chaofu Wu
- Department of Chemistry and Materials Science; Hunan University of Humanities Science & Technology; Dixing Road 487, Louxing District Loudi 417000 Hunan Province People's Republic of China
| |
Collapse
|