1
|
Liu J, Zhang F, Shi X. The role of metal nanocarriers, liposomes and chitosan-based nanoparticles in diabetic retinopathy treatment: A review study. Int J Biol Macromol 2024; 291:139017. [PMID: 39708854 DOI: 10.1016/j.ijbiomac.2024.139017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Diabetic Retinopathy (DR) is a significant and progressive eye complication associated with diabetes mellitus, leading to potential vision loss. The pathophysiology of DR involves complex neurovascular changes due to prolonged hyperglycemia, resulting in microangiopathy and neurodegeneration. Current treatment modalities come with limitations such as low bioavailability of therapeutic agents, risk of side effects, and surgical complications. Consequently, the prevention and management of DR, particularly in its advanced stages, present ongoing challenges. This review investigates recent advancements in nanotechnology as a novel approach to enhance the treatment of DR. A comprehensive literature review of recent studies focusing on nanocarriers for drug delivery in DR treatment and an analysis of their efficacy compared to traditional methods was conducted for this study. The findings indicate that nanotechnology can significantly enhance the bioavailability of therapeutic agents while minimizing systemic exposure and associated side effects. The novelty of this study lies in its focus on the intersection of nanotechnology and ophthalmology, exploring innovative solutions that extend beyond existing literature on DR treatments. By highlighting recent advancements in this field, the study paves the way for future research aimed at developing more effective therapeutic strategies for managing DR.
Collapse
Affiliation(s)
- Junling Liu
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China
| | - Feng Zhang
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China.
| | - Xiaolong Shi
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China
| |
Collapse
|
2
|
Iqbal H, Razzaq A, Zhou D, Lou J, Xiao R, Lin F, Liang Y. Nanomedicine in glaucoma treatment; Current challenges and future perspectives. Mater Today Bio 2024; 28:101229. [PMID: 39296355 PMCID: PMC11409099 DOI: 10.1016/j.mtbio.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Glaucoma presents a significant global health concern and affects millions of individuals worldwide and predicted a high increase in prevalence of about 111 million by 2040. The current standard treatment involves hypotensive eye drops; however, challenges such as patient adherence and limited drug bioavailability hinder the treatment effectiveness. Nanopharmaceuticals or nanomedicines offer promising solutions to overcome these obstacles. In this manuscript, we summarized the current limitations of conventional antiglaucoma treatment, role of nanomedicine in glaucoma treatment, rational design, factors effecting the performance of nanomedicine and different types of nanocarriers in designing of nanomedicine along with their applications in glaucoma treatment from recent literature. Current clinical challenges that hinder real-time application of antiglaucoma nanomedicine are highlighted. Lastly, future directions are identified for improving the therapeutic potential and translation of antiglaucoma nanomedicine into clinic.
Collapse
Affiliation(s)
- Haroon Iqbal
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Anam Razzaq
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Dengming Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiangtao Lou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Run Xiao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fu Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanbo Liang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
3
|
Liu L, Li Z, Yang B, Jia X, Wang S. Recent Research Progress on Polyamidoamine-Engineered Hydrogels for Biomedical Applications. Biomolecules 2024; 14:620. [PMID: 38927024 PMCID: PMC11201556 DOI: 10.3390/biom14060620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogels are three-dimensional crosslinked functional materials with water-absorbing and swelling properties. Many hydrogels can store a variety of small functional molecules to structurally and functionally mimic the natural extracellular matrix; hence, they have been extensively studied for biomedical applications. Polyamidoamine (PAMAM) dendrimers have an ethylenediamine core and a large number of peripheral amino groups, which can be used to engineer various polymer hydrogels. In this review, an update on the progress of using PAMAM dendrimers for multifunctional hydrogel design was given. The synthesis of these hydrogels, which includes click chemistry reactions, aza-Michael addition, Schiff base reactions, amidation reactions, enzymatic reactions, and radical polymerization, together with research progress in terms of their application in the fields of drug delivery, tissue engineering, drug-free tumor therapy, and other related fields, was discussed in detail. Furthermore, the biomedical applications of PAMAM-engineered nano-hydrogels, which combine the advantages of dendrimers, hydrogels, and nanoparticles, were also summarized. This review will help researchers to design and develop more functional hydrogel materials based on PAMAM dendrimers.
Collapse
Affiliation(s)
- Li Liu
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Zhiling Li
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Baiyan Yang
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Xiaoqing Jia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
4
|
Qiu L, Zhang J, Liu S, Li B, Wang J, Tang J, Pu X, Huang Z, Liao X, Yin G. Dendritic Oligoethylenimine Decorated Liposome with Augmented Corneal Retention and Permeation for Efficient Topical Delivery of Antiglaucoma Drugs. NANO LETTERS 2023; 23:11193-11202. [PMID: 38039401 DOI: 10.1021/acs.nanolett.3c03691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
The topically administered glaucoma medications usually encounter serious precorneal drug loss and low corneal penetration, leading to a low bioavailability. In addition, due to the complexity of glaucoma etiology, a single medication is often insufficient. In this work, we report a novel dendritic oligoethylenimine decorated liposome for codelivery of two antiglaucoma drugs, latanoprost and timolol. The liposome showed a uniform nanoscopic particle size, positive surface charge, and excellent dual-drug loading capacity. A prolonged precorneal retention is observed by using this liposomal delivery system. This liposomal delivery system presents increased cellular uptake and tight junctions opening capacity, contributing respectively to the transcellular and paracellular permeation, thereby enhancing the trans-corneal transportation. Following topical administration of one eye drop in brown Norway rats, the dual-drug-loaded liposome formulation resulted in a sustained and effective intraocular pressure reduction as long as 5 days, without inducing ocular inflammation, discomfort, and tissue damage.
Collapse
Affiliation(s)
- Li Qiu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jialuo Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shujing Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
5
|
Sun H, Wang G, Feng Q, Liu S. Polymer-Based Self-Assembled Drug Delivery Systems for Glaucoma Treatment: Design Strategies and Recent Advances. Polymers (Basel) 2023; 15:4466. [PMID: 38006190 PMCID: PMC10675782 DOI: 10.3390/polym15224466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Glaucoma has become the world's leading cause of irreversible blindness, and one of its main characteristics is high intraocular pressure. Currently, the non-surgical drug treatment scheme to reduce intraocular pressure is a priority method for glaucoma treatment. However, the complex and special structure of the eye poses significant challenges to the treatment effect and safety adherence of this drug treatment approach. To address these challenges, the application of polymer-based self-assembled drug delivery systems in glaucoma treatment has emerged. This review focuses on the utilization of polymer-based self-assembled structures or materials as important functional and intelligent carriers for drug delivery in glaucoma treatment. Various drug delivery systems, such as eye drops, hydrogels, and contact lenses, are discussed. Additionally, the review primarily summarizes the design strategies and methods used to enhance the treatment effect and safety compliance of these polymer-based drug delivery systems. Finally, the discussion delves into the new challenges and prospects of employing polymer-based self-assembled drug delivery systems for the treatment of glaucoma.
Collapse
Affiliation(s)
- Hao Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China;
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Guangtong Wang
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Qingying Feng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China;
| | - Shaoqin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China;
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
6
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|