1
|
Radaelli E, Palladino G, Nanetti E, Scicchitano D, Rampelli S, Airoldi S, Candela M, Marangi M. Meta-analysis of the Cetacea gut microbiome: Diversity, co-evolution, and interaction with the anthropogenic pathobiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172943. [PMID: 38714258 DOI: 10.1016/j.scitotenv.2024.172943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Despite their critical roles in marine ecosystems, only few studies have addressed the gut microbiome (GM) of cetaceans in a comprehensive way. Being long-living apex predators with a carnivorous diet but evolved from herbivorous ancestors, cetaceans are an ideal model for studying GM-host evolutionary drivers of symbiosis and represent a valuable proxy of overall marine ecosystem health. Here, we investigated the GM of eight different cetacean species, including both Odontocetes (toothed whales) and Mysticetes (baleen whales), by means of 16S rRNA-targeted amplicon sequencing. We collected faecal samples from free-ranging cetaceans circulating within the Pelagos Sanctuary (North-western Mediterranean Sea) and we also included publicly available cetacean gut microbiome sequences. Overall, we show a clear GM trajectory related to host phylogeny and taxonomy (i.e., phylosymbiosis), with remarkable GM variations which may reflect adaptations to different diets between baleen and toothed whales. While most samples were found to be infected by protozoan parasites of potential anthropic origin, we report that this phenomenon did not lead to severe GM dysbiosis. This study underlines the importance of both host phylogeny and diet in shaping the GM of cetaceans, highlighting the role of neutral processes as well as environmental factors in the establishment of this GM-host symbiosis. Furthermore, the presence of potentially human-derived protozoan parasites in faeces of free-ranging cetaceans emphasizes the importance of these animals as bioindicators of anthropic impact on marine ecosystems.
Collapse
Affiliation(s)
- Elena Radaelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy
| | - Enrico Nanetti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy
| | - Sabina Airoldi
- Tethys Research Institute, Viale G.B. Gadio 2, 20121 Milano, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy.
| | - Marianna Marangi
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy.
| |
Collapse
|
2
|
Suzuki A, Shirakata C, Anzai H, Sumiyama D, Suzuki M. Vitamin B 12 biosynthesis of Cetobacterium ceti isolated from the intestinal content of captive common bottlenose dolphins ( Tursiops truncatus). MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36178719 DOI: 10.1099/mic.0.001244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In comparison with terrestrial mammals, dolphins require a large amount of haemoglobin in blood and myoglobin in muscle to prolong their diving time underwater and increase the depth they can dive. The genus Cetobacterium is a common gastrointestinal bacterium in dolphins and includes two species: C. somerae and C. ceti. Whilst the former produces vitamin B12, which is essential for the biosynthesis of haem, a component of haemoglobin and myoglobin, but not produced by mammals, the production ability of the latter remains unknown. The present study aimed to isolate C. ceti from dolphins and reveal its ability to biosynthesize vitamin B12. Three strains of C. ceti, identified by phylogenetic analyses with 16S rRNA gene and genome-based taxonomy assignment and biochemical features, were isolated from faecal samples collected from two captive common bottlenose dolphins (Tursiops truncatus). A microbioassay using Lactobacillus leichmannii ATCC 7830 showed that the average concentration of vitamin B12 produced by the three strains was 11 (standard deviation: 2) pg ml-1. The biosynthesis pathway of vitamin B12, in particular, adenosylcobalamin, was detected in the draft genome of the three strains using blastKOALA. This is the first study to isolate C. ceti from common bottlenose dolphins and reveal its ability of vitamin B12 biosynthesis, and our findings emphasize the importance of C. ceti in supplying haemoglobin and myoglobin to dolphins.
Collapse
Affiliation(s)
- Akihiko Suzuki
- Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
- National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506 Japan
| | - Chika Shirakata
- Enoshima Aquarium, Fujisawa, Kanagawa, 251-0035 Japan
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-0054 Japan
| | - Hiroshi Anzai
- Laboratory of Biotechnology in Dairy Life, Department of Bioscience in Dairy Life, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Daisuke Sumiyama
- Laboratory of Biotechnology in Dairy Life, Department of Bioscience in Dairy Life, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Miwa Suzuki
- Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| |
Collapse
|
3
|
Li C, Xie H, Sun Y, Zeng Y, Tian Z, Chen X, Sanganyado E, Lin J, Yang L, Li P, Liang B, Liu W. Insights on Gut and Skin Wound Microbiome in Stranded Indo-Pacific Finless Porpoise (Neophocaena phocaenoides). Microorganisms 2022; 10:microorganisms10071295. [PMID: 35889014 PMCID: PMC9318903 DOI: 10.3390/microorganisms10071295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The gut microbiome is a unique marker for cetaceans’ health status, and the microbiome composition of their skin wounds can indicate a potential infection from their habitat. Our study provides the first comparative analysis of the microbial communities from gut regions and skin wounds of an individual Indo-Pacific finless porpoise (Neophocaena phocaenoides). Microbial richness increased from the foregut to the hindgut with variation in the composition of microbes. Fusobacteria (67.51% ± 5.10%), Firmicutes (22.00% ± 2.60%), and Proteobacteria (10.47% ± 5.49%) were the dominant phyla in the gastrointestinal tract, while Proteobacteria (76.11% ± 0.54%), Firmicutes (22.00% ± 2.60%), and Bacteroidetes (10.13% ± 0.49%) were the dominant phyla in the skin wounds. The genera Photobacterium, Actinobacillus, Vibrio, Erysipelothrix, Tenacibaculum, and Psychrobacter, considered potential pathogens for mammals, were identified in the gut and skin wounds of the stranded Indo-Pacific finless porpoise. A comparison of the gut microbiome in the Indo-Pacific finless porpoise and other cetaceans revealed a possible species-specific gut microbiome in the Indo-Pacific finless porpoise. There was a significant difference between the skin wound microbiomes in terrestrial and marine mammals, probably due to habitat-specific differences. Our results show potential species specificity in the microbiome structure and a potential threat posed by environmental pathogens to cetaceans.
Collapse
Affiliation(s)
- Chengzhang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Huiying Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Ying Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Ziyao Tian
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaohan Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Jianqing Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Liangliang Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (B.L.); (W.L.)
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (B.L.); (W.L.)
| |
Collapse
|
4
|
Distribution and Difference of Gastrointestinal Flora in Sheep with Different Body Mass Index. Animals (Basel) 2022; 12:ani12070880. [PMID: 35405869 PMCID: PMC8996880 DOI: 10.3390/ani12070880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Fat deposition is the key factor affecting the efficiency of animal husbandry production. There are many factors affecting fat deposition, in which the gastrointestinal microbiota plays an important role. Therefore, the body mass index (BMI) was introduced into the evaluation of sheep fat deposition, and the different microbiota and functional pathways of the sheep gastrointestinal tract in different BMI groups were analyzed. We selected 5% of individuals with the highest and lowest BMI from a feed test population (357 in whole group). Microorganisms in 10 sites of the gastrointestinal tract in 36 individuals (18 in each group) were evaluated by 16S rRNA V3−V4 region sequencing. There were differences (p < 0.05) in fat deposition traits between different BMI groups. In the 10 parts of the gastrointestinal tract, the diversity and richness of cecal microflora in the high-BMI group were higher than those in low-BMI Hu sheep (p < 0.05). Principal coordinate analysis (PCoA) showed that there was separation of the cecum between groups, and there were differences in the cecal microbial community. Linear discriminant analysis effect size (LEfSe) showed that most biomarkers were in the cecum. On the basis of an indepth study of cecal microorganisms, 26 different bacterial genera were obtained (p < 0.05). Correlation analysis between them and the characteristics of fat deposition in sheep showed that Colidextribacter, Alloprevotella, and Succenivibrio were positively correlated with fat deposition, while Lachnospiraceae_ND3007_Group was negatively correlated (p < 0.05). The above results show that the cecum may be an important part leading to the difference of BMI in sheep, and its microorganisms may affect the level of fat deposition.
Collapse
|
5
|
Gut Microbial Characterization of Melon-Headed Whales (Peponocephala electra) Stranded in China. Microorganisms 2022; 10:microorganisms10030572. [PMID: 35336147 PMCID: PMC8950688 DOI: 10.3390/microorganisms10030572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 12/04/2022] Open
Abstract
Although gut microbes are regarded as a significant component of many mammals and play a very important role, there is a paucity of knowledge around marine mammal gut microbes, which may be due to sampling difficulties. Moreover, to date, there are very few, if any, reports on the gut microbes of melon-headed whales. In this study, we opportunistically collected fecal samples from eight stranded melon-headed whales (Peponocephala electra) in China. Using high-throughput sequencing technology of partial 16S rRNA gene sequences, we demonstrate that the main taxa of melon-headed whale gut microbes are Firmicutes, Fusobacteriota, Bacteroidota, and Proteobacteria (Gamma) at the phylum taxonomic level, and Cetobacterium, Bacteroides, Clostridium sensu stricto, and Enterococcus at the genus taxonomic level. Meanwhile, molecular ecological network analysis (MENA) shows that two modules (a set of nodes that have strong interactions) constitute the gut microbial community network of melon-headed whales. Module 1 is mainly composed of Bacteroides, while Module 2 comprises Cetobacterium and Enterococcus, and the network keystone genera are Corynebacterium, Alcaligenes, Acinetobacter, and Flavobacterium. Furthermore, by predicting the functions of the gut microbial community through PICRUSt2, we found that although there are differences in the composition of the gut microbial community in different individuals, the predicted functional profiles are similar. Our study gives a preliminary inside look into the composition of the gut microbiota of stranded melon-headed whales.
Collapse
|
6
|
Tian J, Du J, Lu Z, Han J, Wang Z, Li D, Guan X, Wang Z. Distribution of microbiota across different intestinal tract segments of a stranded dwarf minke whale, Balaenoptera acutorostrata. Microbiologyopen 2020; 9:e1108. [PMID: 32783331 PMCID: PMC7568251 DOI: 10.1002/mbo3.1108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/22/2022] Open
Abstract
Marine mammals are an important part of ocean ecosystems, of which, whales play a vital role in the marine food chain. In this study, the mucosa and contents from different intestinal tract segments (ITSs) of a stranded dwarf minke whale (Balaenoptera acutorostrata) were analyzed. The gut microbiota were sequenced using high‐throughput sequencing technology, based on a 16S rRNA approach. The microbial composition of the intestinal mucosa and its contents were similar in every single ITS. Large intestine microbiota richness and diversity were significantly higher when compared to the duodenum and jejunum. The dominant bacteria in the gut were Firmicutes and Actinobacteria; the former was enriched in the large intestine, whereas the latter was more abundant in the duodenum and jejunum. Our findings provide novel insights for microbiota in B. acutorostrata.
Collapse
Affiliation(s)
- Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Jiabo Han
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Zhen Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Duohui Li
- Dalian Modern Agricultural Production Development Service Center, Dalian, China
| | - Xiaoyan Guan
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Zhaohui Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| |
Collapse
|