1
|
Li X, Wang J, Yang Y, Jin H, Wang H, Zhang Z, Li X, Cui Y, Wang X, Yan J. Sequential Reductive Dechlorination of Triclosan by Sediment Microbiota Harboring Organohalide-Respiring Dehalococcoidia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14843-14854. [PMID: 39106339 DOI: 10.1021/acs.est.4c04594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Aquatic ecosystems represent a prominent reservoir of xenobiotic compounds, including triclosan (TCS), a broad-spectrum biocide extensively used in pharmaceuticals and personal care products. As a biogeochemical hotspot, the potential of aquatic sediments for the degradation of TCS remains largely unexplored. Here, we demonstrated anaerobic biotransformation of TCS in a batch microcosm established with freshwater sediment. The initial 43.4 ± 2.2 μM TCS was completely dechlorinated to diclosan, followed by subsequent conversion to 5-chloro-2-phenoxyphenol, a monochlorinated TCS (MCS) congener. Analyses of community profile and population dynamics revealed substrate-specific, temporal-growth of Dehalococcoides and Dehalogenimonas, which are organohalide-respiring bacteria (OHRB) affiliated with class Dehalococcoidia. Dehalococcoides growth was linked to the formation of diclosan but not MCS, yielding 3.6 ± 0.4 × 107 cells per μmol chloride released. A significant increase in Dehalogenimonas cells, from 1.5 ± 0.4 × 104 to 1.5 ± 0.3 × 106 mL-1, only occurred during the reductive dechlorination of diclosan to MCS. Dehalococcoidia OHRB gradually disappeared following consecutive transfers, likely due to the removal of sediment materials with strong adsorption capacity that could alleviate TCS's antimicrobial toxicity. Consequently, a solid-free, functionally stable TCS-dechlorinating consortium was not obtained. Our results provide insights into the microbial determinants controlling the environmental fate of TCS.
Collapse
Affiliation(s)
- Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Liaoning Technical Innovation Center for Ecological Restoration of Polluted Environment, Shenyang, Liaoning 110016, China
| | - Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Liaoning Technical Innovation Center for Ecological Restoration of Polluted Environment, Shenyang, Liaoning 110016, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Liaoning Technical Innovation Center for Ecological Restoration of Polluted Environment, Shenyang, Liaoning 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Liaoning Technical Innovation Center for Ecological Restoration of Polluted Environment, Shenyang, Liaoning 110016, China
| | - Hongyan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhipeng Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaocui Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiru Cui
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Liaoning Technical Innovation Center for Ecological Restoration of Polluted Environment, Shenyang, Liaoning 110016, China
| |
Collapse
|
2
|
Lyu Q, Feng Z, Liu Y, Wang J, Xu L, Tian X, Yan Z, Ji G. Analysis of latrine fecal odor release pattern and the deodorization with composited microbial agent. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:371-384. [PMID: 38432182 DOI: 10.1016/j.wasman.2024.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
As an important source of malodor, the odor gases emitted from public toilet significantly interfered the air quality of living surroundings, resulting in environmental problem which received little attention before. Thus, this paper explored the odor release pattern of latrine feces and deodorization effect with composited microbial agent in Chengdu, China. The odor release rules were investigated in sealed installations with a working volume of 9 L for 20 days. The odor units (OU), ammonia (NH3), hydrogen sulfide (H2S) and total volatile organic compounds (TVOC) were selected to assess the release of malodorous gases under different temperature and humidity, while the highest malodor release was observed under 45℃, with OU and TVOC concentration was 643.91 ± 2.49 and 7767.33 ± 33.50 mg/m3, respectively. Microbes with deodorization ability were screened and mixed into an agent, which composited of Bacillus amyloliquefaciens, Lactobacillus plantarum, Enterococcus faecalis and Pichia fermentans. The addition of microbial deodorant could significantly suppress the release of malodor gas during a 20-day trial, and the removal efficiency of NH3, H2S, TVOC and OU was 81.50 %, 38.31 %, 64.38 %, and 76.86 %, respectively. The analysis of microbial community structure showed that temperature was the main environmental factor driving the microbial variations in latrine feces, while Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes were the main bacteria phyla involved in the formation and emission of malodorous gases. However, after adding the deodorant, the abundance of Bacteroidetes, Proteobacteria and Actinobacteria were decreased, while the abundance of Firmicutes was increased. Furthermore, P. fermentans successfully colonized in fecal substrates and became the dominant fungus after deodorization. These results expanded the understanding of the odor release from latrine feces, and the composited microbial deodorant provided a valuable basis to the management of odor pollution.
Collapse
Affiliation(s)
- Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhaozhuo Feng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jialing Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lishan Xu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Gaosheng Ji
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
3
|
Di Cicco F, Evans RL, James AG, Weddell I, Chopra A, Smeets MAM. Intrinsic and extrinsic factors affecting axillary odor variation. A comprehensive review. Physiol Behav 2023; 270:114307. [PMID: 37516230 DOI: 10.1016/j.physbeh.2023.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
Humans produce odorous secretions from multiple body sites according to the microbiomic profile of each area and the types of secretory glands present. Because the axilla is an active, odor-producing region that mediates social communication via the sense of smell, this article focuses on the biological mechanisms underlying the creation of axillary odor, as well as the intrinsic and extrinsic factors likely to impact the odor and determine individual differences. The list of intrinsic factors discussed includes sex, age, ethnicity, emotions, and personality, and extrinsic factors include dietary choices, diseases, climate, and hygienic habits. In addition, we also draw attention to gaps in our understanding of each factor, including, for example, topical areas such as the effect of climate on body odor variation. Fundamental challenges and emerging research opportunities are further outlined in the discussion. Finally, we suggest guidelines and best practices based on the factors reviewed herein for preparatory protocols of sweat collection, data analysis, and interpretation.
Collapse
Affiliation(s)
- Francesca Di Cicco
- Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, the Netherlands.
| | - Richard L Evans
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - A Gordon James
- Unilever Research & Development, Colworth House, Sharnbrook, UK
| | - Iain Weddell
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - Anita Chopra
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - Monique A M Smeets
- Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, the Netherlands; Unilever Research & Development, Rotterdam, the Netherlands
| |
Collapse
|
4
|
An In Vitro HL-1 Cardiomyocyte-Based Olfactory Biosensor for Olfr558-Inhibited Efficiency Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Some short-chain fatty acids with a pungent or unpleasant odor are important components of human body odor. These malodors severely threaten human health. The antagonists of malodors would help to improve odor perception by affecting the interaction between odors and their receptors. However, the traditional odor detection and analysis methods, such as MOS, electrochemical, conductive polymer gas sensors, or chromatography-mass spectrometry are not suitable for screening the antagonists since they are unable to detect the ligand efficacy after odor-receptor binding. In this study, RT-PCR results showed that HL-1 cardiomyocytes endogenously express the olfactory receptor 558 (Olfr558) which can be activated by several malodorous short-chain fatty acids. Therefore, an in vitro HL-1 cardiomyocyte-based olfactory biosensor (HCBO-biosensor) was developed by combining cardiomyocytes and microelectrode array (MEA) chips for screening the potential antagonists of the Olfr558. Firstly, it showed that the biosensor specifically responded to ligands of Olfr558 through odor stimulation experiments. Then, an odor response model of HL-1 cardiomyocytes was constructed by a ligand of Olfr558 (isovaleric acid). The response feature of the in vitro HCBO-biosensor to individual odors and mixtures with a potential antagonist (citral or β-damascenone) were extracted and compared. Finally, the Olfr558-inhibited efficiency was indirectly detected by comparing the half-maximal inhibitory concentration of isovaleric acid. The results showed that β-damascenone greatly inhibited Olfr558 while citral showed no significant inhibitory effect. In conclusion, we built a novel screening method for the antagonists of Olfr558 based on HL-1 cardiomyocytes and the MEA chip which will assist odor-related companies to develop novel antagonists of Olfr558.
Collapse
|