1
|
Ejaz MR, Badr K, Hassan ZU, Al-Thani R, Jaoua S. Metagenomic approaches and opportunities in arid soil research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176173. [PMID: 39260494 DOI: 10.1016/j.scitotenv.2024.176173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kareem Badr
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Rodríguez-Fuentes ME, Pérez-Sayáns M, Barbeito-Castiñeiras G, Molares-Vila A, Prado-Pena IB, Camolesi GCV, López-López R. Oral specimens as a tool for accurate metagenomic analysis: A pilot study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101991. [PMID: 39084558 DOI: 10.1016/j.jormas.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES Acute oral mucosal damage, as well as other inflammatory processes seem to be related to dysbiosis of the oral microbiome. The need to study changes in the oral microbiome led us to hypothesize what type of sample would provide the most representative picture of the entire human oral microbiome. MATERIALS AND METHODS An observational, and cross-sectional study was carried out. Six healthy adult participants provided 3 different sample types each, that included saliva, oral rinse and mucosal biopsy tissue. We performed 16S rRNA sequencing of the V3-V4 region of the 18 samples using Illumina MiSeq technology. RESULTS Participants were 27 ± 6,3 years old. Bacterial alpha diversity was higher in oral rinse samples compared to whole unstimulated saliva and oral mucosa tissue (p = 0,005). However, saliva specimens showed a 56 % relative abundance of identified species followed by a 30 % in oral rinse and only 1 % in tissue samples. CONCLUSIONS This study found differences on oral microbiome composition for each type of sample. Oral rinse should be chosen when higher alpha diversity is needed, whereas whole unstimulated saliva should be more appropriate for larger amount of bacterial DNA. CLINICAL RELEVANCE The results obtained demonstrate the importance of a correct choice of the optimal type of oral sample for microbiome studies due to the differences found in its composition.
Collapse
Affiliation(s)
- Manuel Eros Rodríguez-Fuentes
- Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, c/ Entrerríos s/n, Santiago de Compostela 15782, Spain; Health Research Institute of Santiago de Compostela (IDIS, ORALRES Group), Santiago de Compostela, A Coruña 15706, Spain
| | - Mario Pérez-Sayáns
- Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, c/ Entrerríos s/n, Santiago de Compostela 15782, Spain; Health Research Institute of Santiago de Compostela (IDIS, ORALRES Group), Santiago de Compostela, A Coruña 15706, Spain.
| | - Gema Barbeito-Castiñeiras
- Microbiology Unit, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Alberto Molares-Vila
- Health Research Institute of Santiago de Compostela (IDIS, ORALRES Group), Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS, RESMET Group, https://resmet.org), Santiago de Compostela, A Coruña 15706, Spain
| | - Irene B Prado-Pena
- Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, c/ Entrerríos s/n, Santiago de Compostela 15782, Spain
| | - Gisela C V Camolesi
- Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, c/ Entrerríos s/n, Santiago de Compostela 15782, Spain; Health Research Institute of Santiago de Compostela (IDIS, ORALRES Group), Santiago de Compostela, A Coruña 15706, Spain
| | - Rafael López-López
- Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, c/ Entrerríos s/n, Santiago de Compostela 15782, Spain; Medical Oncology Unit, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| |
Collapse
|
3
|
Yunus A, Mokhtar NM, Raja Ali RA, Ahmad Kendong SM, Ahmad HF. Methods for identification of the opportunistic gut mycobiome from colorectal adenocarcinoma biopsy tissues. MethodsX 2024; 12:102623. [PMID: 38435637 PMCID: PMC10907193 DOI: 10.1016/j.mex.2024.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Colorectal cancer poses a significant threat to global health, necessitating the development of effective early detection techniques. However, the potential of the fungal microbiome as a putative biomarker for the detection of colorectal adenocarcinoma has not been extensively explored. We analyzed the viability of implementing the fungal mycobiome for this purpose. Biopsies were collected from cancer and polyp patients. The total genomic DNA was extracted from the biopsy samples by utilizing a comprehensive kit to ensure optimal microbial DNA recovery. To characterize the composition and diversity of the fungal mycobiome, high-throughput amplicon sequencing targeting the internal transcribed spacer 1 (ITS1) region was proposed. A comparative analysis revealed discrete fungal profiles among the diseased groups. Here, we also proposed pipelines based on a predictive model using statistical and machine learning algorithms to accurately differentiate colorectal adenocarcinoma and polyp patients from normal individuals. These findings suggest the utility of gut mycobiome as biomarkers for the detection of colorectal adenocarcinoma. Expanding our understanding of the role of the gut mycobiome in disease detection creates novel opportunities for early intervention and personalized therapeutic strategies for colorectal cancer.•Detailed method to identify the gut mycobiome in colorectal cancer patients using ITS-specific amplicon sequencing.•Application of machine learning algorithms to the identification of potential mycobiome biomarkers for non-invasive colorectal cancer screening.•Contribution to the advancement of innovative colorectal cancer diagnostic methods and targeted therapies by applying gut mycobiome knowledge.
Collapse
Affiliation(s)
- Aisyah Yunus
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), 56000 Kuala Lumpur, Malaysia
- Gut Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Raja Affendi Raja Ali
- Gut Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
- School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| | - Siti Maryam Ahmad Kendong
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), 56000 Kuala Lumpur, Malaysia
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
- Gut Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Barcenilla C, Cobo-Díaz JF, De Filippis F, Valentino V, Cabrera Rubio R, O'Neil D, Mahler de Sanchez L, Armanini F, Carlino N, Blanco-Míguez A, Pinto F, Calvete-Torre I, Sabater C, Delgado S, Ruas-Madiedo P, Quijada NM, Dzieciol M, Skírnisdóttir S, Knobloch S, Puente A, López M, Prieto M, Marteinsson VT, Wagner M, Margolles A, Segata N, Cotter PD, Ercolini D, Alvarez-Ordóñez A. Improved sampling and DNA extraction procedures for microbiome analysis in food-processing environments. Nat Protoc 2024; 19:1291-1310. [PMID: 38267717 DOI: 10.1038/s41596-023-00949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/09/2023] [Indexed: 01/26/2024]
Abstract
Deep investigation of the microbiome of food-production and food-processing environments through whole-metagenome sequencing (WMS) can provide detailed information on the taxonomic composition and functional potential of the microbial communities that inhabit them, with huge potential benefits for environmental monitoring programs. However, certain technical challenges jeopardize the application of WMS technologies with this aim, with the most relevant one being the recovery of a sufficient amount of DNA from the frequently low-biomass samples collected from the equipment, tools and surfaces of food-processing plants. Here, we present the first complete workflow, with optimized DNA-purification methodology, to obtain high-quality WMS sequencing results from samples taken from food-production and food-processing environments and reconstruct metagenome assembled genomes (MAGs). The protocol can yield DNA loads >10 ng in >98% of samples and >500 ng in 57.1% of samples and allows the collection of, on average, 12.2 MAGs per sample (with up to 62 MAGs in a single sample) in ~1 week, including both laboratory and computational work. This markedly improves on results previously obtained in studies performing WMS of processing environments and using other protocols not specifically developed to sequence these types of sample, in which <2 MAGs per sample were obtained. The full protocol has been developed and applied in the framework of the European Union project MASTER (Microbiome applications for sustainable food systems through technologies and enterprise) in 114 food-processing facilities from different production sectors.
Collapse
Affiliation(s)
- Coral Barcenilla
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | | | | | - Federica Armanini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Niccolò Carlino
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Aitor Blanco-Míguez
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Pinto
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Inés Calvete-Torre
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario, Oviedo, Asturias, Spain
| | - Carlos Sabater
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario, Oviedo, Asturias, Spain
| | - Susana Delgado
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario, Oviedo, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario, Oviedo, Asturias, Spain
| | - Narciso M Quijada
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
- Department for Farm Animals and Veterinary Public Health, Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Monika Dzieciol
- Department for Farm Animals and Veterinary Public Health, Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Stephen Knobloch
- Microbiology Research Group, Matís ohf., Reykjavík, Iceland
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Alba Puente
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Viggó Thór Marteinsson
- Microbiology Research Group, Matís ohf., Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Martin Wagner
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
- Department for Farm Animals and Veterinary Public Health, Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Abelardo Margolles
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario, Oviedo, Asturias, Spain
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland and VistaMilk Research Centres, Cork, Ireland
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain.
| |
Collapse
|
5
|
Goraichuk IV, Harden M, Spackman E, Suarez DL. The 28S rRNA RT-qPCR assay for host depletion evaluation to enhance avian virus detection in Illumina and Nanopore sequencing. Front Microbiol 2024; 15:1328987. [PMID: 38351914 PMCID: PMC10864109 DOI: 10.3389/fmicb.2024.1328987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Abundant host and bacterial sequences can obscure the detection of less prevalent viruses in untargeted next-generation sequencing (NGS). Efficient removal of these non-targeted sequences is vital for accurate viral detection. This study presents a novel 28S ribosomal RNA (rRNA) RT-qPCR assay designed to assess the efficiency of avian rRNA depletion before conducting costly NGS for the detection of avian RNA viruses. The comprehensive evaluation of this 28S-test focuses on substituting DNase I with alternative DNases in our established depletion protocols and finetuning essential parameters for reliable host rRNA depletion. To validate the effectiveness of the 28S-test, we compared its performance with NGS results obtained from both Illumina and Nanopore sequencing platforms. This evaluation utilized swab samples from chickens infected with highly pathogenic avian influenza virus, subjected to established and modified depletion protocols. Both methods significantly reduced host rRNA levels, but using the alternative DNase had superior performance. Additionally, utilizing the 28S-test, we explored cost- and time-effective strategies, such as reduced probe concentrations and other alternative DNase usage, assessed the impact of filtration pre-treatment, and evaluated various experimental parameters to further optimize the depletion protocol. Our findings underscore the value of the 28S-test in optimizing depletion methods for advancing improvements in avian disease research through NGS.
Collapse
Affiliation(s)
- Iryna V. Goraichuk
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - Mark Harden
- College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | - Erica Spackman
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - David L. Suarez
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
6
|
Bruggeling CE, te Groen M, Garza DR, van Heeckeren tot Overlaer F, Krekels JPM, Sulaiman BC, Karel D, Rulof A, Schaaphok AR, Hornikx DLAH, Nagtegaal ID, Dutilh BE, Hoentjen F, Boleij A. Bacterial Oncotraits Rather than Spatial Organization Are Associated with Dysplasia in Ulcerative Colitis. J Crohns Colitis 2023; 17:1870-1881. [PMID: 37243505 PMCID: PMC10673813 DOI: 10.1093/ecco-jcc/jjad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Colonic bacterial biofilms are frequently present in ulcerative colitis [UC] and may increase dysplasia risk through pathogens expressing oncotraits. This prospective cohort study aimed to determine [1] the association of oncotraits and longitudinal biofilm presence with dysplasia risk in UC, and [2] the relation of bacterial composition with biofilms and dysplasia risk. METHODS Faeces and left- and right-sided colonic biopsies were collected from 80 UC patients and 35 controls. Oncotraits [FadA of Fusobacterium, BFT of Bacteroides fragilis, colibactin [ClbB] and Intimin [Eae] of Escherichia coli] were assessed in faecal DNA with multiplex quantitative polymerase chain reaction [qPCR]. Biopsies were screened for biofilms [n = 873] with 16S rRNA fluorescent in situ hybridiation. Shotgun metagenomic sequencing [n = 265], and ki67-immunohistochemistry were performed. Associations were determined with a mixed-effects regression model. RESULTS Biofilms were highly prevalent in UC patients [90.8%] with a median persistence of 3 years (interquartile range [IQR] 2-5 years). Biofilm-positive biopsies showed increased epithelial hypertrophy [p = 0.025] and a reduced Shannon diversity independent of disease status [p = 0.015], but were not significantly associated with dysplasia in UC: adjusted odds ratio [aOR] 1.45, 95% confidence interval [CI] 0.63-3.40. In contrast, ClbB independently associated with dysplasia [aOR 7.16, 95% CI 1.75-29.28], and FadA and Fusobacteriales were associated with a decreased dysplasia risk in UC [aOR 0.23, 95% CI 0.06-0.83, p <0.01]. CONCLUSIONS Biofilms are a hallmark of UC; however, because of their high prevalence are a poor biomarker for dysplasia. In contrast, colibactin presence and FadA absence independently associate with dysplasia in UC and might therefore be valuable biomarkers for future risk stratification and intervention strategies.
Collapse
Affiliation(s)
- Carlijn E Bruggeling
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten te Groen
- Inflammatory Bowel Disease Center, Department of Gastroenterology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniel R Garza
- Center for Molecular and Biomolecular Informatics [CMBI], Radboud Institute for Molecular Life Sciences [RIMLS], Nijmegen, The Netherlands
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium
| | - Famke van Heeckeren tot Overlaer
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joyce P M Krekels
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Basma-Chick Sulaiman
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Davy Karel
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Athreyu Rulof
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne R Schaaphok
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniel L A H Hornikx
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas E Dutilh
- Center for Molecular and Biomolecular Informatics [CMBI], Radboud Institute for Molecular Life Sciences [RIMLS], Nijmegen, The Netherlands
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Frank Hoentjen
- Inflammatory Bowel Disease Center, Department of Gastroenterology, Radboud University Medical Center, Nijmegen, The Netherlands
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Longhi G, Argentini C, Fontana F, Tarracchini C, Mancabelli L, Lugli GA, Alessandri G, Lahner E, Pivetta G, Turroni F, Ventura M, Milani C. Saponin treatment for eukaryotic DNA depletion alters the microbial DNA profiles by reducing the abundance of Gram-negative bacteria in metagenomics analyses. MICROBIOME RESEARCH REPORTS 2023; 3:4. [PMID: 38455080 PMCID: PMC10917613 DOI: 10.20517/mrr.2023.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 03/09/2024]
Abstract
Background: Recent advances in microbiome sequencing techniques have provided new insights into the role of the microbiome on human health with potential diagnostic implications. However, these developments are often hampered by the presence of a large amount of human DNA interfering with the analysis of the bacterial content. Nowadays, extensive scientific literature focuses on eukaryotic DNA depletion methods, which successfully remove host DNA in microbiome studies, even if a precise assessment of the impact on bacterial DNA is often missing. Methods: Here, we have investigated a saponin-based DNA isolation protocol commonly applied to different biological matrices to deplete the released host DNA. Results: The bacterial DNA obtained was used to assess the relative abundance of bacterial and human DNA, revealing that the inclusion of 2.5% wt/vol saponin allowed the depletion of most of the host's DNA in favor of bacterial DNA enrichment. However, shotgun metagenomic sequencing showed inaccurate microbial profiles of the DNA samples, highlighting an erroneous increase in Gram-positive DNA. Even the application of 0.0125% wt/vol saponin altered the bacterial profile by depleting Gram-negative bacteria, resulting in an overall increase of Gram-positive bacterial DNA. Conclusion: The application of the saponin-based protocol drastically changes the detection of the microbial composition of human-related biological specimens. In this context, we revealed that saponin targets not only host cells but also specific bacterial cells, thus inducing a drastic reduction in the profiling of Gram-negative bacterial DNA.
Collapse
Affiliation(s)
- Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- GenProbio Srl, Parma 43124, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- GenProbio Srl, Parma 43124, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Edith Lahner
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant’Andrea Hospital, School of Medicine, University Sapienza, Rome 00185, Italy
| | - Giulia Pivetta
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant’Andrea Hospital, School of Medicine, University Sapienza, Rome 00185, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| |
Collapse
|
8
|
Wu-Woods NJ, Barlow JT, Trigodet F, Shaw DG, Romano AE, Jabri B, Eren AM, Ismagilov RF. Microbial-enrichment method enables high-throughput metagenomic characterization from host-rich samples. Nat Methods 2023; 20:1672-1682. [PMID: 37828152 PMCID: PMC10885704 DOI: 10.1038/s41592-023-02025-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/27/2023] [Indexed: 10/14/2023]
Abstract
Host-microbe interactions have been linked to health and disease states through the use of microbial taxonomic profiling, mostly via 16S ribosomal RNA gene sequencing. However, many mechanistic insights remain elusive, in part because studying the genomes of microbes associated with mammalian tissue is difficult due to the high ratio of host to microbial DNA in such samples. Here we describe a microbial-enrichment method (MEM), which we demonstrate on a wide range of sample types, including saliva, stool, intestinal scrapings, and intestinal mucosal biopsies. MEM enabled high-throughput characterization of microbial metagenomes from human intestinal biopsies by reducing host DNA more than 1,000-fold with minimal microbial community changes (roughly 90% of taxa had no significant differences between MEM-treated and untreated control groups). Shotgun sequencing of MEM-treated human intestinal biopsies enabled characterization of both high- and low-abundance microbial taxa, pathways and genes longitudinally along the gastrointestinal tract. We report the construction of metagenome-assembled genomes directly from human intestinal biopsies for bacteria and archaea at relative abundances as low as 1%. Analysis of metagenome-assembled genomes reveals distinct subpopulation structures between the small and large intestine for some taxa. MEM opens a path for the microbiome field to acquire deeper insights into host-microbe interactions by enabling in-depth characterization of host-tissue-associated microbial communities.
Collapse
Affiliation(s)
- Natalie J Wu-Woods
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Jacob T Barlow
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Florian Trigodet
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Dustin G Shaw
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Anna E Romano
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
| | - Bana Jabri
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - A Murat Eren
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Alfred-Wegener-Institute for Marine and Polar Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Rustem F Ismagilov
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA.
| |
Collapse
|
9
|
Mes W, Lücker S, Jetten MSM, Siepel H, Gorissen M, van Kessel MAHJ. Comparison of the gill and gut microbiomes of common carp (Cyprinus carpio) and zebrafish (Danio rerio) and their RAS environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165212. [PMID: 37391154 DOI: 10.1016/j.scitotenv.2023.165212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Recirculating aquaculture systems (RAS) are increasingly being used to grow fish, as intensive water reuse reduces water consumption and environmental impact. RAS use biofilters containing nitrogen-cycling microorganisms that remove ammonia from the aquaculture water. Knowledge of how RAS microbial communities relate to the fish-associated microbiome is limited, as is knowledge of fish-associated microbiota in general. Recently, nitrogen-cycling bacteria have been discovered in zebrafish and carp gills and shown to detoxify ammonia in a manner similar to the RAS biofilter. Here, we compared RAS water and biofilter microbiomes with fish-associated gut and gill microbial communities in laboratory RAS housing either zebrafish (Danio rerio) or common carp (Cyprinus carpio) using 16S rRNA gene amplicon sequencing. The phylogeny of ammonia-oxidizing bacteria in the gills and the RAS environment was investigated in more detail by phylogenetic analysis of the ammonia monooxygenase subunit A (amoA). The location from which the microbiome was sampled (RAS compartments and gills or gut) had a stronger effect on community composition than the fish species, but species-specific differences were also observed. We found that carp- and zebrafish-associated microbiomes were highly distinct from their respective RAS microbiomes, characterized by lower overall diversity and a small core microbiome consisting of taxa specifically adapted to the respective organ. The gill microbiome was also defined by a high proportion of unique taxa. Finally, we found that amoA sequences from the gills were distinct from those from the RAS biofilter and water. Our results showed that the gut and gill microbiomes of carp and zebrafish share a common and species-specific core microbiome that is distinct from the microbially-rich RAS environment.
Collapse
Affiliation(s)
- Wouter Mes
- Cluster Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands; Cluster Ecology & Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Sebastian Lücker
- Cluster Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Mike S M Jetten
- Cluster Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Henk Siepel
- Cluster Ecology & Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Marnix Gorissen
- Cluster Ecology & Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Maartje A H J van Kessel
- Cluster Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Marchukov D, Li J, Juillerat P, Misselwitz B, Yilmaz B. Benchmarking microbial DNA enrichment protocols from human intestinal biopsies. Front Genet 2023; 14:1184473. [PMID: 37180976 PMCID: PMC10169731 DOI: 10.3389/fgene.2023.1184473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Shotgun metagenomic sequencing is a powerful tool for studying bacterial communities in their natural habitats or sites of infection, without the need for cultivation. However, low microbial signals in metagenomic sequencing can be overwhelmed by host DNA contamination, resulting in decreased sensitivity for microbial read detection. Several commercial kits and other methods have been developed to enrich bacterial sequences; however, these assays have not been tested extensively for human intestinal tissues yet. Therefore, the objective of this study was to assess the effectiveness of various wet-lab and software-based approaches for depleting host DNA from microbiome samples. Four different microbiome DNA enrichment methods, namely the NEBNext Microbiome DNA Enrichment kit, Molzym Ultra-Deep Microbiome Prep, QIAamp DNA Microbiome kit, and Zymo HostZERO microbial DNA kit, were evaluated, along with a software-controlled adaptive sampling (AS) approach by Oxford Nanopore Technologies (ONT) providing microbial signal enrichment by aborting unwanted host DNA sequencing. The NEBNext and QIAamp kits proved to be effective in shotgun metagenomic sequencing studies, as they efficiently reduced host DNA contamination, resulting in 24% and 28% bacterial DNA sequences, respectively, compared to <1% in the AllPrep controls. Additional optimization steps using further detergents and bead-beating steps improved the efficacy of less efficient protocols but not of the QIAamp kit. In contrast, ONT AS increased the overall number of bacterial reads resulting in a better bacterial metagenomic assembly with more bacterial contigs with greater completeness compared to non-AS approaches. Additionally, AS also allowed for the recovery of antimicrobial resistance markers and the identification of plasmids, demonstrating the potential utility of AS for targeted sequencing of microbial signals in complex samples with high amounts of host DNA. However, ONT AS resulted in relevant shifts in the observed bacterial abundance, including 2 to 5 times more Escherichia coli reads. Furthermore, a modest enrichment of Bacteroides fragilis and Bacteroides thetaiotaomicron was also observed with AS. Overall, this study provides insight into the efficacy and limitations of various methods for reducing host DNA contamination in human intestinal samples to improve the utility of metagenomic sequencing.
Collapse
Affiliation(s)
- Dmitrij Marchukov
- University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Jiaqi Li
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Pascal Juillerat
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
- Crohn’s and Colitis Center, Gastroenterologie Beaulieu, Lausanne, Switzerland
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Ahmadi A, Khezri A, Nørstebø H, Ahmad R. A culture-, amplification-independent, and rapid method for identification of pathogens and antibiotic resistance profile in bovine mastitis milk. Front Microbiol 2023; 13:1104701. [PMID: 36687564 PMCID: PMC9852903 DOI: 10.3389/fmicb.2022.1104701] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Rapid and accurate diagnosis of causative pathogens in mastitis would minimize the imprudent use of antibiotics and, therefore, reduce the spread of antimicrobial resistance. Whole genome sequencing offers a unique opportunity to study the microbial community and antimicrobial resistance (AMR) in mastitis. However, the complexity of milk samples and the presence of a high amount of host DNA in milk from infected udders often make this very challenging. Methods Here, we tested 24 bovine milk samples (18 mastitis and six non-mastitis) using four different commercial kits (Qiagens' DNeasy® PowerFood® Microbial, Norgens' Milk Bacterial DNA Isolation, and Molzyms' MolYsis™ Plus and Complete5) in combination with filtration, low-speed centrifugation, nuclease, and 10% bile extract of male bovine (Ox bile). Isolated DNA was quantified, checked for the presence/absence of host and pathogen using PCR and sequenced using MinION nanopore sequencing. Bioinformatics analysis was performed for taxonomic classification and antimicrobial resistance gene detection. Results The results showed that kits designed explicitly for bacterial DNA isolation from food and dairy matrices could not deplete/minimize host DNA. Following using MolYsis™ Complete 5 + 10% Ox bile + micrococcal nuclease combination, on average, 17% and 66.5% of reads were classified as bovine and Staphylococcus aureus reads, respectively. This combination also effectively enriched other mastitis pathogens, including Escherichia coli and Streptococcus dysgalactiae. Furthermore, using this approach, we identified important AMR genes such as Tet (A), Tet (38), fosB-Saur, and blaZ. We showed that even 40 min of the MinION run was enough for bacterial identification and detecting the first AMR gene. Conclusion We implemented an effective method (sensitivity of 100% and specificity of 92.3%) for host DNA removal and bacterial DNA enrichment (both gram-negative and positive) directly from bovine mastitis milk. To the best of our knowledge, this is the first culture- and amplification-independent study using nanopore-based metagenomic sequencing for real-time detection of the pathogen (within 5 hours) and the AMR profile (within 5-9 hours), in mastitis milk samples. These results provide a promising and potential future on-farm adaptable approach for better clinical management of mastitis.
Collapse
Affiliation(s)
- Asal Ahmadi
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway,Institute of Clinical Medicine, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway,*Correspondence: Rafi Ahmad,
| |
Collapse
|
12
|
Mannion A, Sheh A, Shen Z, Dzink-Fox J, Piazuelo MB, Wilson KT, Peek R, Fox JG. Shotgun Metagenomics of Gastric Biopsies Reveals Compositional and Functional Microbiome Shifts in High- and Low-Gastric-Cancer-Risk Populations from Colombia, South America. Gut Microbes 2023; 15:2186677. [PMID: 36907988 PMCID: PMC10026914 DOI: 10.1080/19490976.2023.2186677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Along with Helicobacter pylori infection, the gastric microbiota is hypothesized to modulate stomach cancer risk in susceptible individuals. Whole metagenomic shotgun sequencing (WMS) is a sequencing approach to characterize the microbiome with advantages over traditional culture and 16S rRNA sequencing including identification of bacterial and non-bacterial taxa, species/strain resolution, and functional characterization of the microbiota. In this study, we used WMS to survey the microbiome in extracted DNA from antral gastric biopsy samples from Colombian patients residing in the high-risk gastric cancer town Túquerres (n = 10, H. pylori-positive = 7) and low-risk town of Tumaco (n = 10, H. pylori-positive = 6). Kraken2/Bracken was used for taxonomic classification and abundance. Functional gene profiles were inferred by InterProScan and KEGG analysis of assembled contigs and gene annotation. The most abundant taxa represented bacteria, non-human eukaryota, and viral genera found in skin, oral, food, and plant/soil environments including Staphylococus, Streptococcus, Bacillus, Aspergillus, and Siphoviridae. H. pylori was the predominant taxa present in H. pylori-positive samples. Beta diversity was significantly different based on H. pylori-status, risk group, and sex. WMS detected more bacterial taxa than 16S rRNA sequencing and aerobic, anaerobic, and microaerobic culture performed on the same gastric biopsy samples. WMS identified significant differences in functional profiles found between H. pylori-status, but not risk or sex groups. H. pylori-positive samples were significantly enriched for H. pylori-specific genes including virulence factors such as vacA, cagA, and urease, while carbohydrate and amino acid metabolism genes were enriched in H. pylori-negative samples. This study shows WMS has the potential to characterize the taxonomy and function of the gastric microbiome as risk factors for H. pylori-associated gastric disease. Future studies will be needed to compare and validate WMS versus traditional culture and 16S rRNA sequencing approaches for characterization of the gastric microbiome.
Collapse
Affiliation(s)
- Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - JoAnn Dzink-Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith T Wilson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard Peek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Lazarevic V, Gaïa N, Girard M, Mauffrey F, Ruppé E, Schrenzel J. Effect of bacterial DNA enrichment on detection and quantification of bacteria in an infected tissue model by metagenomic next-generation sequencing. ISME COMMUNICATIONS 2022; 2:122. [PMID: 37938717 PMCID: PMC9792467 DOI: 10.1038/s43705-022-00208-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 10/28/2023]
Abstract
Before implementing metagenomic next-generation sequencing (mNGS) in the routine diagnostic laboratory, several challenges need to be resolved. To address strengths and limitations of mNGS in bacterial detection and quantification in samples with overwhelming host DNA abundance, we used the pig muscle tissue spiked with a home-made bacterial mock community, consisting of four species from different phyla. From the spiked tissue, we extracted DNA using: (i) a procedure based on mechanical/chemical lysis (no bacterial DNA enrichment); (ii) the Ultra-Deep Microbiome Prep (Molzym) kit for bacterial DNA enrichment; and (iii) the same enrichment kit but replacing the original proteinase K treatment for tissue solubilization by a collagenases/thermolysin digestion and cell filtration. Following mNGS, we determined bacterial: 'host' read ratios and taxonomic abundance profiles. We calculated the load of each mock-community member by combining its read counts with read counts and microscopically-determined cell counts of other co-spiked bacteria. In unenriched samples, bacterial quantification and taxonomic profiling were fairly accurate but at the expense of the sensitivity of detection. The removal of 'host' DNA by the modified enrichment protocol substantially improved bacterial detection in comparison to the other two extraction procedures and generated less distorted taxonomic profiles as compared to the original enrichment protocol.
Collapse
Affiliation(s)
- Vladimir Lazarevic
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Nadia Gaïa
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Myriam Girard
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Florian Mauffrey
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Etienne Ruppé
- Université Sorbonne Paris Nord and INSERM UMR1137 IAME, Université de Paris Cité, Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, Paris, France
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, University Hospitals and University of Geneva, Geneva, Switzerland
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
14
|
Fujikawa T, Tanimoto K, Kawashima Y, Ito T, Honda K, Takeda T, Sonobe A, Aoki N, Bai J, Tsutsumi T. Cholesteatoma has an altered microbiota with a higher abundance of Staphylococcus species. Laryngoscope Investig Otolaryngol 2022; 7:2011-2019. [PMID: 36544934 PMCID: PMC9764795 DOI: 10.1002/lio2.934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To compare the microbiota between cholesteatoma and chronic suppurative otitis media (COM) and to identify potential pathogens that explain the relevant phenotypes of cholesteatoma. Study Design Prospective cohort study. Methods Surgical specimens collected from 20 cholesteatomas and nine COMs were treated to dissolve biofilms and subjected to 16S ribosomal RNA (rRNA) gene sequencing and amplicon sequence variant-level analysis for microbiota profiling and quantitative comparison. Correlations between the relative abundance of potential pathogens and the volume of the primary resected cholesteatomas were examined. Results Differences in bacterial composition (beta diversity) were observed between cholesteatomas and COM (p = .002), with a higher abundance of Staphylococcus in cholesteatomas than in COM (p = .005). Common genera in the external auditory canal (EAC) flora, such as Staphylococcus, Corynebacterium, and Cutibacterium, were predominant in both cholesteatoma and COM; Staphylococcus aureus and Pseudomonas aeruginosa were increased in both diseases compared with the EAC flora. Furthermore, coagulase-negative staphylococci (CoNS) were more abundant in cholesteatomas than in COM (p = 0.002). Linear discriminant analysis coupled with effect size measurements (LEfSe) identified four CoNS as potential biomarkers for cholesteatoma. The relative abundance of S. aureus, a potential pathogen, was positively correlated with cholesteatoma volume (r = .60, p = .02). Conclusion The microbiota of cholesteatoma and COM originated from EAC flora, but the bacterial composition was largely altered. Our results suggested that S. aureus infection is involved in cholesteatoma progression. Level of Evidence 3b.
Collapse
Affiliation(s)
- Taro Fujikawa
- Department of OtolaryngologyTokyo Medical and Dental UniversityTokyoJapan
| | - Kousuke Tanimoto
- Genome Laboratory, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | | | - Taku Ito
- Department of OtolaryngologyTokyo Medical and Dental UniversityTokyoJapan
| | - Keiji Honda
- Department of OtolaryngologyTokyo Medical and Dental UniversityTokyoJapan
| | - Takamori Takeda
- Department of OtolaryngologyTokyo Medical and Dental UniversityTokyoJapan
| | - Akane Sonobe
- Genome Laboratory, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Natsuki Aoki
- Department of OtolaryngologyTokyo Medical and Dental UniversityTokyoJapan
| | - Jing Bai
- Department of OtolaryngologyTokyo Medical and Dental UniversityTokyoJapan
| | - Takeshi Tsutsumi
- Department of OtolaryngologyTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
15
|
No Effect of Lactobacillus rhamnosus GG on Eradication of Colonization by Vancomycin-Resistant Enterococcus faecium or Microbiome Diversity in Hospitalized Adult Patients. Microbiol Spectr 2022; 10:e0234821. [PMID: 35475684 PMCID: PMC9241610 DOI: 10.1128/spectrum.02348-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The purpose of this trial was to evaluate the efficacy of a 4-week supplementation of Lactobacillus rhamnosus GG (LGG) in eliminating the gastrointestinal carrier state of vancomycin-resistant Enterococcus faecium (VREfm) in hospitalized adults. The primary outcome of the study was the number of patients with cleared VREfm colonization after the 4-week intervention. Secondary outcomes were clearance of VREfm colonization at weeks 8, 16, and 24, number of VREfm infections (isolated from nonintestinal foci), and changes in fecal microbiome diversity after the intervention. The trial was a multicenter, randomized, double-blind, placebo-controlled trial in hospitalized adult VREfm carriers. Patients were enrolled and randomized to receive 60 billion CFU of LGG daily or placebo for 4 weeks. For a subgroup of patients, rectal swabs for VREfm were collected also at 8, 16, and 24 weeks and analyzed using shotgun metagenomics. Patients ingesting a minimum of 50% of the probiotic during the 4-week intervention were included in subsequent outcome analyses (48 of 81 patients). Twelve of 21 patients in the LGG group (57%) compared to 15 of 27 patients in the placebo group (56%) cleared their VREfm carriage. Eighteen patients completed the entire 24-week intervention with the same minimum compliancy. Of these, almost 90% in both groups cleared their VREfm carriage. We found a statistically significant difference between VREfm clearers and nonclearers regarding metronidazole and vancomycin usage as well as length of hospitalization after inclusion. The microbiome analyses revealed no significant difference in alpha diversity between the LGG and the placebo group. Beta diversity differed between the groups and the different time points. This study did not show an effect of LGG in eradication of VREfm after a 4-week intervention. IMPORTANCE Whereas other studies exploring the effect of L. rhamnosus in clearing VREfm from the intestine included children and adults, with a wider age range, our study consisted of a geriatric patient cohort. The natural clearance of VREfm in this study was almost 60% after 4 weeks, thus much higher than described previously. Also, this study characterizes the microbiome of VREfm patients in detail. This article showed no effect of the probiotic L. rhamnosus in clearing VREfm from the intestine of patients.
Collapse
|
16
|
Sumithra TG, Sharma SRK, Gayathri S, Ebeneezar S, Reshma KJ, Anikuttan KK, Narasimapallavan GI, Rameshkumar P, Sakthivel M, Prabu DL, Tamilmani G, Vijayagopal P, Gopalakrishnan A. Comparative evaluation of fish larval preservation methods on microbiome profiles to aid in metagenomics research. Appl Microbiol Biotechnol 2022; 106:4719-4735. [PMID: 35739345 DOI: 10.1007/s00253-022-12026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Applications of microbiome research through metagenomics promise to generate microbiome manipulation strategies for improved larval survival in aquaculture. However, existing lacunae on the effects of sample preservation methods in metagenome profiles hinder the successful application of this technique. In this context, four preservation methods were scrutinized to identify reliable methods for fish larval microbiome research. The results showed that a total of ten metagenomics metrics, including DNA yield, taxonomic and functional microbiome profiles, and diversity measures, were significantly (P < 0.05) influenced by the preservation method. Activity ranking based on the performance and reproducibility showed that three methods, namely immediate direct freezing, room temperature preservation in absolute ethanol, and preservation at - 20 °C in lysis, storage, and transportation buffer, could be recommended for larval microbiome research. Furthermore, as there was an apparent deviation of the microbiome profiles of ethanol preserved samples at room temperature, the other methods are preferred. Detailed analysis showed that this deviation was due to the bias towards Vibrionales and Rhodobacterales. The microbial taxa responsible for the dissimilarity across different methods were identified. Altogether, the paper sheds light on the preservation protocols of fish larval microbiome research for the first time. The results can help in cross-comparison of future and past larval microbiome studies. Furthermore, this is the first report on the activity ranking of preservation methods based on metagenomics metrics. Apart from methodological perspectives, the paper provides for the first time certain insights into larval microbial profiles of Rachycentron canadum, a potential marine aquaculture species. KEY POINTS: • First report on effects of preservation methods on fish larval microbiome profiles. • First report on activity ranking of preservation methods based on metagenomics metrics. • Storage methods influenced DNA yield, taxonomic and functional microbiome profiles.
Collapse
Affiliation(s)
- T G Sumithra
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682 018, India
| | - S R Krupesha Sharma
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682 018, India.
| | - S Gayathri
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682 018, India
| | - Sanal Ebeneezar
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682 018, India
| | - K J Reshma
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682 018, India
| | - K K Anikuttan
- Mandapam Regional Centre of ICAR-CMFRI, Marine Fisheries P.O, 623 520, Mandapam Camp, India
| | | | - P Rameshkumar
- Mandapam Regional Centre of ICAR-CMFRI, Marine Fisheries P.O, 623 520, Mandapam Camp, India
| | - M Sakthivel
- Mandapam Regional Centre of ICAR-CMFRI, Marine Fisheries P.O, 623 520, Mandapam Camp, India
| | - D Linga Prabu
- Tuticorin Regional Station of ICAR-CMFRI, South Beach Road, 628 001, Tuticorin, India
| | - G Tamilmani
- Mandapam Regional Centre of ICAR-CMFRI, Marine Fisheries P.O, 623 520, Mandapam Camp, India
| | - P Vijayagopal
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682 018, India
| | - A Gopalakrishnan
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682 018, India
| |
Collapse
|
17
|
Sumithra TG, Sharma KSR, Gangadharan S, Suresh G, Prasad V, Amala PV, Sayooj P, Gop AP, Anil MK, Patil PK, Achamveetil G. Dysbiosis and Restoration Dynamics of the Gut Microbiome Following Therapeutic Exposure to Florfenicol in Snubnose Pompano (Trachinotus blochii) to Aid in Sustainable Aquaculture Production Strategies. Front Microbiol 2022; 13:881275. [PMID: 35707172 PMCID: PMC9189426 DOI: 10.3389/fmicb.2022.881275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Information on unintended effects of therapeutic exposure of antibiotics on the fish gut microbiome is a vital prerequisite for ensuring fish and environmental health during sustainable aquaculture production strategies. The present study forms the first report on the impact of florfenicol (FFC), a recommended antibiotic for aquaculture, on the gut microbiome of snubnose pompano (Trachinotus blochii), a high-value marine aquaculture candidate. Both culture-dependent and independent techniques were applied to identify the possible dysbiosis and restoration dynamics, pointing out the probable risks to the host and environment health. The results revealed the critical transient dysbiotic events in the taxonomic and functional metagenomic profiles and significant reductions in the bacterial load and diversity measures. More importantly, there was a complete restoration of gut microbiome density, diversity, functional metagenomic profiles, and taxonomic composition (up to class level) within 10–15 days of antibiotic withdrawal, establishing the required period for applying proper management measures to ensure animal and environment health, following FFC treatment. The observed transient increase in the relative abundance of opportunistic pathogens suggested the need to apply proper stress management measures and probiotics during the period. Simultaneously, the results demonstrated the inhibitory potential of FFC against marine pathogens (vibrios) and ampicillin-resistant microbes. The study pointed out the possible microbial signatures of stress in fish and possible probiotic microbes (Serratia sp., Methanobrevibacter sp., Acinetobacter sp., and Bacillus sp.) that can be explored to design fish health improvisation strategies. Strikingly, the therapeutic exposure of FFC neither caused any irreversible increase in antibiotic resistance nor promoted the FFC resistant microbes in the gut. The significant transient increase in the numbers of kanamycin-resistant bacteria and abundance of two multidrug resistance encoding genes (K03327 and K03585) in the treated fish gut during the initial 10 days post-withdrawal suggested the need for implementing proper aquaculture effluent processing measures during the period, thus, helps to reduce the spillover of antibiotic-resistant microbes from the gut of the treated fish to the environment. In brief, the paper generates interesting and first-hand insights on the implications of FFC treatment in the gut microbiome of a marine aquaculture candidate targeting its safe and efficient application in unavoidable circumstances. Implementation of mitigation strategies against the identified risks during the initial 15 days of withdrawal period is warranted to ensure cleaner and sustainable aquaculture production from aquatic animal and ecosystem health perspectives.
Collapse
Affiliation(s)
- T. G. Sumithra
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - Krupesha S. R. Sharma
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
- *Correspondence: Krupesha S. R. Sharma,
| | - Suja Gangadharan
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - Gayathri Suresh
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - Vishnu Prasad
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - P. V. Amala
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - P. Sayooj
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - Ambarish P. Gop
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, India
| | - M. K. Anil
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, India
| | - Prasanna Kumar Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Gopalakrishnan Achamveetil
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| |
Collapse
|
18
|
Shi Y, Wang G, Lau HCH, Yu J. Metagenomic Sequencing for Microbial DNA in Human Samples: Emerging Technological Advances. Int J Mol Sci 2022; 23:ijms23042181. [PMID: 35216302 PMCID: PMC8877284 DOI: 10.3390/ijms23042181] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Whole genome metagenomic sequencing is a powerful platform enabling the simultaneous identification of all genes from entirely different kingdoms of organisms in a complex sample. This technology has revolutionised multiple areas from microbiome research to clinical diagnoses. However, one of the major challenges of a metagenomic study is the overwhelming non-microbial DNA present in most of the host-derived specimens, which can inundate the microbial signals and reduce the sensitivity of microorganism detection. Various host DNA depletion methods to facilitate metagenomic sequencing have been developed and have received considerable attention in this context. In this review, we present an overview of current host DNA depletion approaches along with explanations of their underlying principles, advantages and disadvantages. We also discuss their applications in laboratory microbiome research and clinical diagnoses and, finally, we envisage the direction of the further perfection of metagenomic sequencing in samples with overabundant host DNA.
Collapse
Affiliation(s)
| | | | | | - Jun Yu
- Correspondence: ; Tel.: +852-37636099; Fax:+852-21445330
| |
Collapse
|
19
|
Zhao N, Cao J, Xu J, Liu B, Liu B, Chen D, Xia B, Chen L, Zhang W, Zhang Y, Zhang X, Duan Z, Wang K, Xie F, Xiao K, Yan W, Xie L, Zhou H, Wang J. Targeting RNA with Next- and Third-Generation Sequencing Improves Pathogen Identification in Clinical Samples. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102593. [PMID: 34687159 PMCID: PMC8655164 DOI: 10.1002/advs.202102593] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/05/2021] [Indexed: 05/11/2023]
Abstract
Fast and accurate identification of microbial pathogens is critical for the proper treatment of infections. Traditional culture-based diagnosis in clinics is increasingly supplemented by metagenomic next-generation-sequencing (mNGS). Here, RNA/cDNA-targeted sequencing (meta-transcriptomics using NGS (mtNGS)) is established to reduce the host nucleotide percentage in clinic samples and by combining with Oxford Nanopore Technology (ONT) platforms (meta-transcriptomics using third-generation sequencing, mtTGS) to improve the sequencing time. It shows that mtNGS improves the ratio of microbial reads, facilitates bacterial identification using multiple-strategies, and discovers fungi, viruses, and antibiotic resistance genes, and displaying agreement with clinical findings. Furthermore, longer reads in mtTGS lead to additional improvement in pathogen identification and also accelerate the clinical diagnosis. Additionally, primary tests utilizing direct-RNA sequencing and targeted sequencing of ONT show that ONT displays important potential but must be further developed. This study presents the potential of RNA-targeted pathogen identification in clinical samples, especially when combined with the newest developments in ONT.
Collapse
Affiliation(s)
- Na Zhao
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Jiabao Cao
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jiayue Xu
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Beibei Liu
- Peking University Third HospitalBeijing100191China
| | - Bin Liu
- College of Pulmonary and Critical Care MedicineChinese PLA General HospitalBeijing100853China
| | - Dingqiang Chen
- Microbiome Medicine CenterDepartment of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510282China
| | - Binbin Xia
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Wenhui Zhang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuqing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xuan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Zhimei Duan
- College of Pulmonary and Critical Care MedicineChinese PLA General HospitalBeijing100853China
| | - Kaifei Wang
- College of Pulmonary and Critical Care MedicineChinese PLA General HospitalBeijing100853China
| | - Fei Xie
- College of Pulmonary and Critical Care MedicineChinese PLA General HospitalBeijing100853China
| | - Kun Xiao
- College of Pulmonary and Critical Care MedicineChinese PLA General HospitalBeijing100853China
| | - Wei Yan
- Peking University Third HospitalBeijing100191China
| | - Lixin Xie
- College of Pulmonary and Critical Care MedicineChinese PLA General HospitalBeijing100853China
| | - Hongwei Zhou
- Microbiome Medicine CenterDepartment of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510282China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|