1
|
Montanari A. In Vivo Analysis of Mitochondrial Protein Synthesis in Saccharomyces cerevisiae Mitochondrial tRNA Mutants. Methods Mol Biol 2022; 2497:243-254. [PMID: 35771446 DOI: 10.1007/978-1-0716-2309-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
I describe here a protocol for the analysis of mitochondrial protein synthesis as a useful tool to characterize the mitochondrial defects associated with mutations in mitochondrial tRNA genes. The yeast Saccharomyces cerevisiae mutants, bearing human equivalent pathogenic mutations, were used as a simple model for analysis. The mitochondrial proteins were labeled by L[35S]-methionine incorporation in growing cells, extracted from purified mitochondria, and fractionated by SDS-polyacrylamide gel electrophoresis followed by autoradiography. By this method, it is possible to distinguish different protein synthesis profiles in the analyzed mitochondrial tRNA mutants.
Collapse
Affiliation(s)
- Arianna Montanari
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Aitmanaitė L, Konovalovas A, Medvedevas P, Servienė E, Serva S. Specificity Determination in Saccharomyces cerevisiae Killer Virus Systems. Microorganisms 2021; 9:microorganisms9020236. [PMID: 33498746 PMCID: PMC7912047 DOI: 10.3390/microorganisms9020236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Saccharomyces yeasts are widely distributed in the environment and microbiota of higher organisms. The killer phenotype of yeast, encoded by double-stranded RNA (dsRNA) virus systems, is a valuable trait for host survival. The mutual relationship between the different yet clearly defined LA and M virus pairs suggests complex fitting context. To define the basis of this compatibility, we established a system devoted to challenging inherent yeast viruses using viral proteins expressed in trans. Virus exclusion by abridged capsid proteins was found to be complete and nonspecific, indicating the presence of generic mechanisms of Totiviridae maintenance in yeast cells. Indications of specificity in both the exclusion of LA viruses and the maintenance of M viruses by viral capsid proteins expressed in trans were observed. This precise specificity was further established by demonstrating the importance of the satellite virus in the maintenance of LA virus, suggesting the selfish behavior of M dsRNA.
Collapse
Affiliation(s)
- Lina Aitmanaitė
- Laboratory of Nucleic Acid Biochemistry, Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania; (L.A.); (A.K.); (P.M.)
| | - Aleksandras Konovalovas
- Laboratory of Nucleic Acid Biochemistry, Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania; (L.A.); (A.K.); (P.M.)
| | - Povilas Medvedevas
- Laboratory of Nucleic Acid Biochemistry, Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania; (L.A.); (A.K.); (P.M.)
| | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania;
| | - Saulius Serva
- Laboratory of Nucleic Acid Biochemistry, Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania; (L.A.); (A.K.); (P.M.)
- Correspondence: ; Tel.: +370-5239-8244
| |
Collapse
|
3
|
Lacroix B, Citovsky V. Biolistic Approach for Transient Gene Expression Studies in Plants. Methods Mol Biol 2020; 2124:125-139. [PMID: 32277451 DOI: 10.1007/978-1-0716-0356-7_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since its inception in the late 1980s, the delivery of exogenous nucleic acids into living cells via high-velocity microprojectiles (biolistic, or microparticle bombardment) has been an invaluable tool for both agricultural and fundamental plant research. Here, we review the technical aspects and the major applications of the biolistic method for studies involving transient gene expression in plant cells. These studies cover multiple areas of plant research, including gene expression, protein subcellular localization and cell-to-cell movement, plant virology, silencing, and the more recently developed targeted genome editing via transient expression of customized endonucleases.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA.
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| |
Collapse
|
4
|
Amino and carboxy-terminal extensions of yeast mitochondrial DNA polymerase assemble both the polymerization and exonuclease active sites. Mitochondrion 2019; 49:166-177. [PMID: 31445096 DOI: 10.1016/j.mito.2019.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022]
Abstract
Human and yeast mitochondrial DNA polymerases (DNAPs), POLG and Mip1, are related by evolution to bacteriophage DNAPs. However, mitochondrial DNAPs contain unique amino and carboxyl-terminal extensions that physically interact. Here we describe that N-terminal deletions in Mip1 polymerases abolish polymerization and decrease exonucleolytic degradation, whereas moderate C-terminal deletions reduce polymerization. Similarly, to the N-terminal deletions, an extended C-terminal deletion of 298 amino acids is deficient in nucleotide addition and exonucleolytic degradation of double and single-stranded DNA. The latter observation suggests that the physical interaction between the amino and carboxyl-terminal regions of Mip1 may be related to the spread of pathogenic POLG mutant along its primary sequence.
Collapse
|
5
|
Montanari A, Leo M, De Luca V, Filetici P, Francisci S. Gcn5 histone acetyltransferase is present in the mitoplasts. Biol Open 2019; 8:8/2/bio041244. [PMID: 30777878 PMCID: PMC6398455 DOI: 10.1242/bio.041244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Saccharomyces cerevisiae the Lysine-acetyltransferase Gcn5 (KAT2) is part of the SAGA complex and is responsible for histone acetylation widely or at specific lysines. In this paper we report that GCN5 deletion differently affects the growth of two strains. The defective mitochondrial phenotype is related to a marked decrease in mtDNA content, which also involves the deletion of specific regions of the molecule. We also show that in wild-type mitochondria the Gcn5 protein is present in the mitoplasts, suggesting a new mitochondrial function independent from the SAGA complex and possibly a new function for this protein connecting epigenetics and metabolism. Summary: In yeast mitochondria the Gcn5 protein is present in the mitoplasts and is localized in the inner mitochondrial membrane. Its deletion affects the mitochondrial phenotype and is related to a marked decrease of mitochondrial DNA content.
Collapse
Affiliation(s)
- Arianna Montanari
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy .,Pasteur Institute Italy - Cenci Bolognetti Foundation, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Manuela Leo
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Veronica De Luca
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Patrizia Filetici
- Institute of Molecular Biology and Pathology - CNR, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Francisci
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Biolistic Transformation for Delivering DNA into the Mitochondria. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Di Micco P, Fazzi D'Orsi M, Morea V, Frontali L, Francisci S, Montanari A. The yeast model suggests the use of short peptides derived from mt LeuRS for the therapy of diseases due to mutations in several mt tRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:3065-74. [PMID: 25261707 DOI: 10.1016/j.bbamcr.2014.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/23/2023]
Abstract
We have previously established a yeast model of mitochondrial (mt) diseases. We showed that defective respiratory phenotypes due to point-mutations in mt tRNA(Leu(UUR)), tRNA(Ile) and tRNA(Val) could be relieved by overexpression of both cognate and non-cognate nuclearly encoded mt aminoacyl-tRNA synthetases (aaRS) LeuRS, IleRS and ValRS. More recently, we showed that the isolated carboxy-terminal domain (Cterm) of yeast mt LeuRS, and even short peptides derived from the human Cterm, have the same suppressing abilities as the whole enzymes. In this work, we extend these results by investigating the activity of a number of mt aaRS from either class I or II towards a panel of mt tRNAs. The Cterm of both human and yeast mt LeuRS has the same spectrum of activity as mt aaRS belonging to class I and subclass a, which is the most extensive among the whole enzymes. Yeast Cterm is demonstrated to be endowed with mt targeting activity. Importantly, peptide fragments β30_31 and β32_33, derived from the human Cterm, have even higher efficiency as well as wider spectrum of activity, thus opening new avenues for therapeutic intervention. Bind-shifting experiments show that the β30_31 peptide directly interacts with human mt tRNA(Leu(UUR)) and tRNA(Ile), suggesting that the rescuing activity of isolated peptide fragments is mediated by a chaperone-like mechanism. Wide-range suppression appears to be idiosyncratic of LeuRS and its fragments, since it is not shared by Cterminal regions derived from human mt IleRS or ValRS, which are expected to have very different structures and interactions with tRNAs.
Collapse
Affiliation(s)
- Patrizio Di Micco
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Mario Fazzi D'Orsi
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Veronica Morea
- National Research Council of Italy (CNR) - Institute of Biology, Molecular Medicine and Nanobiotechnology (IBMN), Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Laura Frontali
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Silvia Francisci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|