1
|
Paquete-Ferreira J, Freire F, Fernandes HS, Muthukumaran J, Ramos J, Bryton J, Panjkovich A, Svergun D, Santos MFA, Correia MAS, Fernandes AR, Romão MJ, Sousa SF, Santos-Silva T. Structural insights of an LCP protein-LytR-from Streptococcus dysgalactiae subs. dysgalactiae through biophysical and in silico methods. Front Chem 2024; 12:1379914. [PMID: 39170866 PMCID: PMC11337229 DOI: 10.3389/fchem.2024.1379914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
The rise of antibiotic-resistant bacterial strains has become a critical health concern. According to the World Health Organization, the market introduction of new antibiotics is alarmingly sparse, underscoring the need for novel therapeutic targets. The LytR-CpsA-Psr (LCP) family of proteins, which facilitate the insertion of cell wall glycopolymers (CWGPs) like teichoic acids into peptidoglycan, has emerged as a promising target for antibiotic development. LCP proteins are crucial in bacterial adhesion and biofilm formation, making them attractive for disrupting these processes. This study investigated the structural and functional characteristics of the LCP domain of LytR from Streptococcus dysgalactiae subsp. dysgalactiae. The protein structure was solved by X-ray Crystallography at 2.80 Å resolution. Small-angle X-ray scattering (SAXS) data were collected to examine potential conformational differences between the free and ligand-bound forms of the LytR LCP domain. Additionally, docking and molecular dynamics (MD) simulations were used to predict the interactions and conversion of ATP to ADP and AMP. Experimental validation of these predictions was performed using malachite green activity assays. The determined structure of the LCP domain revealed a fold highly similar to those of homologous proteins while SAXS data indicated potential conformational differences between the ligand-free and ligand-bound forms, suggesting a more compact conformation during catalysis, upon ligand binding. Docking and MD simulations predicted that the LytR LCP domain could interact with ADP and ATP and catalyze their conversion to AMP. These predictions were experimentally validated by malachite green activity assays, confirming the protein's functional versatility. The study provides significant insights into the structural features and functional capabilities of the LCP domain of LytR from S. dysgalactiae subsp. dysgalactiae. These findings pave the way for designing targeted therapies against antibiotic-resistant bacteria and offer strategies to disrupt bacterial biofilm formation.
Collapse
Affiliation(s)
- João Paquete-Ferreira
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Filipe Freire
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Henrique S. Fernandes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jayaraman Muthukumaran
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Ramos
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Joana Bryton
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alejandro Panjkovich
- European Molecular Biology Laboratory, Hamburg Unit, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Marino F. A. Santos
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Márcia A. S. Correia
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Maria João Romão
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Sérgio F. Sousa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
2
|
Rasooly R, Do P, Hernlem B. T-cell receptor Vβ8 for detection of biologically active streptococcal pyrogenic exotoxin type C. J Dairy Sci 2023; 106:6723-6730. [PMID: 37210361 DOI: 10.3168/jds.2023-23286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/21/2023] [Indexed: 05/22/2023]
Abstract
Streptococcus pyogenes is an important human pathogen, commonly spread by airborne droplets but also by ingestion of contaminated food. Apart from causing infection, this pathogen produces 13 distinct types of streptococcal pyrogenic exotoxins (SPE). The current method for detection cannot distinguish between the biologically active form of SPE that has been reported to cause foodborne outbreaks and the inactivated toxin that poses no health risk. To measure the biological activity of SPE type C (SPE-C), one such toxin that was linked to foodborne outbreaks associated with milk and milk products, we developed a cell-based assay that can discern between biologically active and inactive SPE-C. To the best of our knowledge, this is the first showing that SPE-C activates T-cells expressing Vβ8. With this finding, we used a T-cell line natively expressing Vβ8 that was genetically engineered to also express the luciferase reporter gene under the regulation of nuclear factor of activated T-cells response element in combination with a B-cell line to present the recombinant SPE-C (rSPE-C) toxin via major histocompatibility complex (MHC) class II to the Vβ8 T-cell receptor (TCR) in an assay to detect and to discern between biologically active and inactive rSPE-C. By using this system, we demonstrated that SPE-C induced significant IL-2 secretion after 72 h and visible light emission after only 5 h, doubling by 24 h. We utilize this finding to assess the specificity of the assay and the effect of pasteurization on SPE-C activity. We observed no cross-reactivity with SPE-B and significant loss of SPE-C biological activity in spiked phosphate-buffered saline while SPE-C spiked into milk is heat stable. Once SPE-C has formed, it is infeasible to eliminate it from milk by thermal treatment.
Collapse
Affiliation(s)
- Reuven Rasooly
- Western Regional Research Center, Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710.
| | - Paula Do
- Western Regional Research Center, Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710
| | - Bradley Hernlem
- Western Regional Research Center, Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710
| |
Collapse
|
3
|
Hassan J, Bag MAS, Ali MW, Kabir A, Hoque MN, Hossain MM, Rahman MT, Islam MS, Khan MSR. Diversity of Streptococcus spp. and genomic characteristics of Streptococcus uberis isolated from clinical mastitis of cattle in Bangladesh. Front Vet Sci 2023; 10:1198393. [PMID: 37533458 PMCID: PMC10392839 DOI: 10.3389/fvets.2023.1198393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Streptococci are the major etiology in mastitis in dairy cattle, a cause of huge economic losses in the dairy industries. This study was aimed to determine the diversity of Streptococcus spp. isolated from clinical mastitis of cattle reared in Bangladesh. Methods A total of 843 lactating cattle reared in four prominent dairy farms and one dairy community were purposively included in this study where 80 cattle were positive to clinical mastitis (CM) based on gross changes in the udder (redness, swelling, and sensitive udder) and/or milk (flakes and/or clots). Milk samples were collected from all the eighty cattle with clinical mastitis (CCM) and twenty five apparently healthy cattle (AHC). Samples were enriched in Luria Bertani broth (LB) and one hundred microliter of the enrichment culture was spread onto selective media for the isolation of Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli and Corynebacterium spp., the major pathogen associated with mastitis. Isolates recovered from culture were further confirmed by species specific PCR. Results and Discussion Out of 105 samples examined 56.2% (59/105), 17.14% (18/105), 9.52% (10/105) and 22.9% (24/105) samples were positive for Staphylococcus, Streptococcus, Enterococcus faecalis and E. coli, respectively. This study was then directed to the determination of diversity of Streptococcus spp. through the sequencing of 16S rRNA. A total of eighteen of the samples from CCM (22.5%) but none from the AHC were positive for Streptococcus spp. by cultural and molecular examination. Sequencing and phylogenetic analysis of 16S rRNA identified 55.6, 33.3, 5.6 and 5.6% of the Streptococcus isolates as Streptococcus uberis, Streptococcus agalactiae, Streptococcus hyovaginalis and Streptococcus urinalis, respectively. Considering the high prevalence and worldwide increasing trend of S. uberis in mastitis, in-depth molecular characterization of S. uberis was performed through whole genome sequencing. Five of the S. uberis strain isolated in this study were subjected to WGS and on analysis two novel ST types of S. uberis were identified, indicating the presence of at least two different genotypes of S. uberis in the study areas. On virulence profiling, all the isolates harbored at least 35 virulence and putative virulence genes probably associated with intramammary infection (IMI) indicating all the S. uberis isolated in this study are potential mastitis pathogen. Overall findings suggest that Streptococcus encountered in bovine mastitis is diverse and S. uberis might be predominantly associated with CM in the study areas. The S. uberis genome carries an array of putative virulence factors that need to be investigated genotypically and phenotypically to identify a specific trait governing the virulence and fitness of this bacterium. Moreover, the genomic information could be used for the development of new genomic tools for virulence gene profiling of S. uberis.
Collapse
Affiliation(s)
- Jayedul Hassan
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Abdus Sattar Bag
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Wohab Ali
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ajran Kabir
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Muhammad Maqsud Hossain
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Shafiqul Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Shahidur Rahman Khan
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
4
|
Guerra M, Marado D, Fortuna J. Acute meningitis complicated with ventriculitis caused by Streptococcus dysgalactiae subsp. dysgalactiae. Arch Clin Cases 2023; 10:11-14. [PMID: 36814676 PMCID: PMC9940286 DOI: 10.22551/2023.38.1001.10231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Streptococcus dysgalactiae subspecies dysgalactiae (SDSD), also known as Lancefield group C streptococcus, is a pathogen found in animals. It is known to cause pyogenic infections in animals and is one of the most common pathogens that can cause mastitis in cattle. Very few reports of SDSD causing human diseases to have been reported in the literature, but we report a case of community-acquired meningitis and pyogenic ventriculitis caused by SDSD. This report is the first case of SDSD causing a central nervous system (CNS) infection in humans and aims to raise awareness about the role of SDSD in CNS infections. It also seeks to promote the recognition of this bacteria as a potential cause of invasive diseases.
Collapse
Affiliation(s)
- Mariana Guerra
- Correspondence: Mariana Guerra. Department of Internal Medicine, Centro Hospitalar Universitário de Coimbra, Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal.
| | | | | |
Collapse
|
5
|
Alves-Barroco C, Brito PH, Santos-Sanches I, Fernandes AR. Phylogenetic analysis and accessory genome diversity reveal insight into the evolutionary history of Streptococcus dysgalactiae. Front Microbiol 2022; 13:952110. [PMID: 35928143 PMCID: PMC9343751 DOI: 10.3389/fmicb.2022.952110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus dysgalactiae (SD) is capable of infecting both humans and animals and causing a wide range of invasive and non-invasive infections. With two subspecies, the taxonomic status of subspecies of SD remains controversial. Subspecies equisimilis (SDSE) is an important human pathogen, while subspecies dysgalactiae (SDSD) has been considered a strictly animal pathogen; however, occasional human infections by this subspecies have been reported in the last few years. Moreover, the differences between the adaptation of SDSD within humans and other animals are still unknown. In this work, we provide a phylogenomic analysis based on the single-copy core genome of 106 isolates from both the subspecies and different infected hosts (animal and human hosts). The accessory genome of this species was also analyzed for screening of genes that could be specifically involved with adaptation to different hosts. Additionally, we searched putatively adaptive traits among prophage regions to infer the importance of transduction in the adaptation of SD to different hosts. Core genome phylogenetic relationships segregate all human SDSE in a single cluster separated from animal SD isolates. The subgroup of bovine SDSD evolved from this later clade and harbors a specialized accessory genome characterized by the presence of specific virulence determinants (e.g., cspZ) and carbohydrate metabolic functions (e.g., fructose operon). Together, our results indicate a host-specific SD and the existence of an SDSD group that causes human–animal cluster infections may be due to opportunistic infections, and that the exact incidence of SDSD human infections may be underestimated due to failures in identification based on the hemolytic patterns. However, more detailed research into the isolation of human SD is needed to assess whether it is a carrier phenomenon or whether the species can be permanently integrated into the human microbiome, making it ready to cause opportunistic infections.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- Applied Molecular Biosciences Unit (UCIBIO), Departamento de Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Costa da Caparica, Portugal
- *Correspondence: Cinthia Alves-Barroco,
| | - Patrícia H. Brito
- Applied Molecular Biosciences Unit (UCIBIO), Departamento de Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Costa da Caparica, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Patrícia H. Brito,
| | - Ilda Santos-Sanches
- Applied Molecular Biosciences Unit (UCIBIO), Departamento de Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
| | - Alexandra R. Fernandes
- Applied Molecular Biosciences Unit (UCIBIO), Departamento de Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Costa da Caparica, Portugal
- Alexandra R. Fernandes,
| |
Collapse
|
6
|
Alves-Barroco C, Botelho AMN, Américo MA, Fracalanzza SEL, de Matos APA, Guimaraes MA, Ferreira-Carvalho BT, Figueiredo AMS, Fernandes AR. Assessing in vivo and in vitro biofilm development by Streptococcus dysgalactiae subsp. dysgalactiae using a murine model of catheter-associated biofilm and human keratinocyte cell. Front Cell Infect Microbiol 2022; 12:874694. [PMID: 35928206 PMCID: PMC9343579 DOI: 10.3389/fcimb.2022.874694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is an important agent of bovine mastitis. This infection causes an inflammatory reaction in udder tissue, being the most important disease-causing significant impact on the dairy industry. Therefore, it leads to an increase in dairy farming to meet commercial demands. As a result, there is a major impact on both the dairy industry and the environment including global warming. Recurrent mastitis is often attributed to the development of bacterial biofilms, which promote survival of sessile cells in hostile environments, and resistance to the immune system defense and antimicrobial therapy. Recently, we described the in vitro biofilm development on abiotic surfaces by bovine SDSD. In that work we integrated microbiology, imaging, and computational methods to evaluate the biofilm production capability of SDSD isolates on abiotic surfaces. Additionally, we reported that bovine SDSD can adhere and internalize human cells, including human epidermal keratinocyte (HEK) cells. We showed that the adherence and internalization rates of bovine SDSD isolates in HEK cells are higher than those of a SDSD DB49998-05 isolated from humans. In vivo, bovine SDSD can cause invasive infections leading to zebrafish morbidity and mortality. In the present work, we investigated for the first time the capability of bovine SDSD to develop biofilm in vivo using a murine animal model and ex-vivo on human HEK cells. Bovine SDSD isolates were selected based on their ability to form weak, moderate, or strong biofilms on glass surfaces. Our results showed that SDSD isolates displayed an increased ability to form biofilms on the surface of catheters implanted in mice when compared to in vitro biofilm formation on abiotic surface. A greater ability to form biofilm in vitro after animal passage was observed for the VSD45 isolate, but not for the other isolates tested. Besides that, in vitro scanning electron microscopy demonstrated that SDSD biofilm development was visible after 4 hours of SDSD adhesion to HEK cells. Cell viability tests showed an important reduction in the number of HEK cells after the formation of SDSD biofilms. In this study, the expression of genes encoding BrpA-like (biofilm regulatory protein), FbpA (fibronectin-binding protein A), HtrA (serine protease), and SagA (streptolysin S precursor) was higher for biofilm grown in vivo than in vitro, suggesting a potential role for these virulence determinants in the biofilm-development, host colonization, and SDSD infections. Taken together, these results demonstrate that SDSD can develop biofilms in vivo and on the surface of HEK cells causing important cellular damages. As SDSD infections are considered zoonotic diseases, our data contribute to a better understanding of the role of biofilm accumulation during SDSD colonization and pathogenesis not only in bovine mastitis, but they also shed some lights on the mechanisms of prosthesis-associated infection and cellulitis caused by SDSD in humans, as well.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO - Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Caparica, Portugal
- i4HB, Associate Laboratory - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ana Maria Nunes Botelho
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Antonio Américo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - António P. Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz - Cooperativa de Ensino Superior CRL, Quinta da Granja, Portugal
| | - Márcia Aparecida Guimaraes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Agnes Marie Sá Figueiredo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Alexandra R. Fernandes, ; Agnes Marie Sá Figueiredo,
| | - Alexandra R. Fernandes
- UCIBIO - Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Caparica, Portugal
- i4HB, Associate Laboratory - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- *Correspondence: Alexandra R. Fernandes, ; Agnes Marie Sá Figueiredo,
| |
Collapse
|
7
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Light Triggered Enhancement of Antibiotic Efficacy in Biofilm Elimination Mediated by Gold-Silver Alloy Nanoparticles. Front Microbiol 2022; 13:841124. [PMID: 35295305 PMCID: PMC8919054 DOI: 10.3389/fmicb.2022.841124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial biofilm is a tri-dimensional complex community of cells at different metabolic stages involved in a matrix of self-produced extracellular polymeric substances. Biofilm formation is part of a defense mechanism that allows the bacteria to survive in hostile environments, such as increasing resistance or tolerance to antimicrobial agents, causing persistent infections hard to treat and impair disease eradication. One such example is bovine mastitis associated with Streptococcus dysgalactiae subsp. dysgalactiae (SDSD), whose worldwide health and economic impact is on the surge. As such, non-conventional nanobased approaches have been proposed as an alternative to tackle biofilm formation and to which pathogenic bacteria fail to adapt. Among these, metallic nanoparticles have gained significant attention, particularly gold and silver nanoparticles, due to their ease of synthesis and impact against microorganism growth. This study provides a proof-of-concept investigation into the use of gold-silver alloy nanoparticles (AuAgNPs) toward eradication of bacterial biofilms. Upon visible light irradiation of AuAgNPs there was considerable disturbance of the biofilms' matrix. The hindering of structural integrity of the biofilm matrix resulted in an increased permeability for entry of antibiotics, which then cause the eradication of biofilm and inhibit subsequent biofilm formation. Additionally, our results that AuAgNPs inhibited the formation of SDSD biofilms via distinct stress pathways that lead to the downregulation of two genes critical for biofilm production, namely, brpA-like encoding biofilm regulatory protein and fbpA fibronectin-binding protein A. This study provides useful information to assist the development of nanoparticle-based strategies for the active treatment of biofilm-related infections triggered by photoirradiation in the visible.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- Biomedical Research Centre, Institute of Nutrition and Food Technology, Department of Physiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Alexandra R. Fernandes
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
8
|
Xu S, Liu Y, Gao J, Zhou M, Yang J, He F, Kastelic JP, Deng Z, Han B. Comparative Genomic Analysis of Streptococcus dysgalactiae subspecies dysgalactiae Isolated From Bovine Mastitis in China. Front Microbiol 2021; 12:751863. [PMID: 34745056 PMCID: PMC8570283 DOI: 10.3389/fmicb.2021.751863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is one of the most prevalent pathogens causing bovine mastitis worldwide. However, there is a lack of comprehensive information regarding genetic diversity, complete profiles of virulence factors (VFs), and antimicrobial resistance (AMR) genes for SDSD associated with bovine mastitis in China. In this study, a total of 674 milk samples, including samples from 509 clinical and 165 subclinical mastitis cases, were collected from 17 herds in 7 provinces in China from November 2016 to June 2019. All SDSD isolates were included in phylogenetic analysis based on 16S rRNA and multi-locus sequence typing (MLST). In addition, whole genome sequencing was performed on 12 representative SDSD isolates to screen for VFs and AMR genes and to define pan-, core and accessory genomes. The prevalence of SDSD from mastitis milk samples was 7.57% (51/674). According to phylogenetic analysis based on 16S rRNA, 51 SDSD isolates were divided into 4 clusters, whereas based on MLST, 51 SDSD isolates were identified as 11 sequence types, including 6 registered STs and 5 novel STs (ST521, ST523, ST526, ST527, ST529) that belonged to 2 distinct clonal complexes (CCs) and 4 singletons. Based on WGS information, 108 VFs genes in 12 isolates were determined in 11 categories. In addition, 23 AMR genes were identified in 11 categories. Pan-, core and accessory genomes were composed of 2,663, 1,633 and 699 genes, respectively. These results provided a comprehensive profiles of SDSD virulence and resistance genes as well as phylogenetic relationships among mastitis associated SDSD in North China.
Collapse
Affiliation(s)
- Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fumeng He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Alves-Barroco C, Caço J, Roma-Rodrigues C, Fernandes AR, Bexiga R, Oliveira M, Chambel L, Tenreiro R, Mato R, Santos-Sanches I. New Insights on Streptococcus dysgalactiae subsp. dysgalactiae Isolates. Front Microbiol 2021; 12:686413. [PMID: 34335512 PMCID: PMC8319831 DOI: 10.3389/fmicb.2021.686413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) has been considered a strict animal pathogen. Nevertheless, the recent reports of human infections suggest a niche expansion for this subspecies, which may be a consequence of the virulence gene acquisition that increases its pathogenicity. Previous studies reported the presence of virulence genes of Streptococcus pyogenes phages among bovine SDSD (collected in 2002-2003); however, the identity of these mobile genetic elements remains to be clarified. Thus, this study aimed to characterize the SDSD isolates collected in 2011-2013 and compare them with SDSD isolates collected in 2002-2003 and pyogenic streptococcus genomes available at the National Center for Biotechnology Information (NCBI) database, including human SDSD and S. dysgalactiae subsp. equisimilis (SDSE) strains to track temporal shifts on bovine SDSD genotypes. The very close genetic relationships between humans SDSD and SDSE were evident from the analysis of housekeeping genes, while bovine SDSD isolates seem more divergent. The results showed that all bovine SDSD harbor Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas IIA system. The widespread presence of this system among bovine SDSD isolates, high conservation of repeat sequences, and the polymorphism observed in spacer can be considered indicators of the system activity. Overall, comparative analysis shows that bovine SDSD isolates carry speK, speC, speL, speM, spd1, and sdn virulence genes of S. pyogenes prophages. Our data suggest that these genes are maintained over time and seem to be exclusively a property of bovine SDSD strains. Although the bovine SDSD genomes characterized in the present study were not sequenced, the data set, including the high homology of superantigens (SAgs) genes between bovine SDSD and S. pyogenes strains, may indicate that events of horizontal genetic transfer occurred before habitat separation. All bovine SDSD isolates were negative for genes of operon encoding streptolysin S, except for sagA gene, while the presence of this operon was detected in all SDSE and human SDSD strains. The data set of this study suggests that the separation between the subspecies "dysgalactiae" and "equisimilis" should be reconsidered. However, a study including the most comprehensive collection of strains from different environments would be required for definitive conclusions regarding the two taxa.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Caço
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ricardo Bexiga
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Manuela Oliveira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Lélia Chambel
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Edifício TecLabs, Lisbon, Portugal
| | - Rogério Tenreiro
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Edifício TecLabs, Lisbon, Portugal
| | - Rosario Mato
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ilda Santos-Sanches
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
10
|
Glajzner P, Szewczyk EM, Szemraj M. Pathogenicity and drug resistance of animal streptococci responsible for human infections. J Med Microbiol 2021; 70. [PMID: 33750514 DOI: 10.1099/jmm.0.001339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria of the genus Streptococcus, earlier considered typically animal, currently have also been causing infections in humans. It is necessary to make clinicians aware of the emergence of new species that may cause the development of human diseases. There is an increasing frequency of isolation of streptococci such as S. suis, S. dysgalactiae, S. iniae and S. equi from people. Isolation of Streptococcus bovis/Streptococcus equinus complex bacteria has also been reported. The streptococcal species described in this review are gaining new properties and virulence factors by which they can thrive in new environments. It shows the potential of these bacteria to changes in the genome and the settlement of new hosts. Information is presented on clinical cases that concern streptococcus species belonging to the groups Bovis, Pyogenic and Suis. We also present the antibiotic resistance profiles of these bacteria. The emerging resistance to β-lactams has been reported. In this review, the classification, clinical characteristics and antibiotic resistance of groups and species of streptococci considered as animal pathogens are summarized.
Collapse
Affiliation(s)
- Paulina Glajzner
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Eligia Maria Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
12
|
Silva A, Silva SA, Lourenço-Lopes C, Jimenez-Lopez C, Carpena M, Gullón P, Fraga-Corral M, Domingues VF, Barroso MF, Simal-Gandara J, Prieto MA. Antibacterial Use of Macroalgae Compounds against Foodborne Pathogens. Antibiotics (Basel) 2020; 9:E712. [PMID: 33080894 PMCID: PMC7603221 DOI: 10.3390/antibiotics9100712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
The search for food resources is a constant in human history. Nowadays, the search for natural and safe food supplies is of foremost importance. Accordingly, there is a renewed interest in eco-friendly and natural products for substitution of synthetic additives. In addition, microbial contamination of food products during their obtaining and distribution processes is still a sanitary issue, and an important target for the food industry is to avoid food contamination and its related foodborne illnesses. These diseases are fundamentally caused by certain microorganisms listed in this review and classified according to their Gram negative or positive character. Algae have proven to possess high nutritional value and a wide variety of biological properties due to their content in active compounds. Among these capabilities, macroalgae are recognized for having antimicrobial properties. Thus, the present paper revises the actual knowledge of microbial contaminants in the food industry and proposes antimicrobial algal compounds against those pathogenic bacteria responsible for food contamination as valuable molecules for its growth inhibition. The capacity of algae extracts to inhibit some major food pathogen growth was assessed. Moreover, the main applications of these compounds in the food industry were discussed while considering their favorable effects in terms of food safety and quality control.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (V.F.D.); (M.F.B.)
| | - Sofia A. Silva
- Departamento de Química, Universidade de Aveiro, 3810-168 Aveiro, Portugal;
| | - C. Lourenço-Lopes
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
| | - C. Jimenez-Lopez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - M. Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
| | - P. Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
| | - M. Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - V. F. Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (V.F.D.); (M.F.B.)
| | - M. Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (V.F.D.); (M.F.B.)
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
| | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (A.S.); (C.L.-L.); (C.J.-L.); (M.C.); (P.G.); (M.F.-C.)
| |
Collapse
|
13
|
Maekawa S, Wang YT, Yoshida T, Wang PC, Chen SC. Group C Streptococcus dysgalactiae infection in fish. JOURNAL OF FISH DISEASES 2020; 43:963-970. [PMID: 32662090 DOI: 10.1111/jfd.13211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (GCSD) is a Gram-positive, facultative anaerobic bacterium and mostly non-β-haemolytic with Lancefield group C antigen. GCSD infection has been identified in various vertebrates. From 2002 to the present, GCSD infection of fish has been reported to cause severe economic losses in aquaculture farms around the world. Moreover, GCSD isolates from teleosts have been identified in patients with ascending upper limb cellulitis. Therefore, the economic and clinical significance of GCSD has increased in aquaculture, livestock and human health. Many studies have been presented, from the first report of isolated GCSD in fish, to the pathogenesis, characterization, immune responses and vaccine development. In this review, we present the current knowledge of GCSD in teleosts.
Collapse
Affiliation(s)
- Shun Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- General Research Service Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Ting Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Terutoyo Yoshida
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, Miyazaki University, Miyazaki, Japan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
14
|
Alves Ferreira D, Martins LMDRS, Fernandes AR, Martins M. A Tale of Two Ends: Repurposing Metallic Compounds from Anti-Tumour Agents to Effective Antibacterial Activity. Antibiotics (Basel) 2020; 9:antibiotics9060321. [PMID: 32545357 PMCID: PMC7344542 DOI: 10.3390/antibiotics9060321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
The rise in antibiotic resistance coupled with the gap in the discovery of active molecules has driven the need for more effective antimicrobials while focusing the attention into the repurpose of already existing drugs. Here, we evaluated the potential antibacterial activity of one cobalt and two zinc metallic compounds previously reported as having anticancer properties. Compounds were tested against a range of Gram-positive and -negative bacteria. The determination of the minimum inhibitory and bactericidal concentrations (MIC/MBC) of the drugs were used to assess their potential antibacterial activity and their effect on bacterial growth. Motility assays were conducted by exposing the bacteria to sub-MIC of each of the compounds. The effect of sub-MIC of the compounds on the membrane permeability was measured by ethidium bromide (EtBr) accumulation assay. Cell viability assays were performed in human cells. Compound TS262 was the most active against the range of bacteria tested. No effect was observed on the motility or accumulation of EtBr for any of the bacteria tested. Cell viability assays demonstrated that the compounds showed a decrease in cell viability at the MIC. These results are promising, and further studies on these compounds can lead to the development of new effective antimicrobials.
Collapse
Affiliation(s)
- Daniela Alves Ferreira
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, D02PN40, Ireland;
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal
- Correspondence: (A.R.F.); (M.M.); Tel.: +351-212948530 (ext. 11107) (A.R.F.); +353-1-896-1194 (M.M.)
| | - Marta Martins
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, D02PN40, Ireland;
- Correspondence: (A.R.F.); (M.M.); Tel.: +351-212948530 (ext. 11107) (A.R.F.); +353-1-896-1194 (M.M.)
| |
Collapse
|
15
|
Santos VL, Silva LG, Martini CL, Anjos IHV, Maia MM, Genteluci GL, Sant'Anna V, Ferreira AMA, Couceiro JNSS, Figueiredo AMS, Ferreira-Carvalho BT. Low lineage diversity and increased virulence of group C Streptococcus dysgalactiae subsp. equisimilis. J Med Microbiol 2020; 69:576-586. [PMID: 32125264 DOI: 10.1099/jmm.0.001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. In some species, the population structure of pathogenic bacteria is clonal. However, the mechanisms that determine the predominance and persistence of specific bacterial lineages of group C Streptococcus remain poorly understood. In Brazil, a previous study revealed the predominance of two main lineages of Streptococcus dysgalactiae subsp. equisimilis (SDSE).Aim. The aim of this study was to assess the virulence and fitness advantages that might explain the predominance of these SDSE lineages for a long period of time.Methodology. emm typing was determined by DNA sequencing. Adhesion and invasion tests were performed using human bronchial epithelial cells (16HBE14o-). Biofilm formation was tested on glass surfaces and the presence of virulence genes was assessed by PCR. Additionally, virulence was studied using Caenorhabditis elegans models and competitive fitness was analysed in murine models.Results. The predominant lineages A and B were mostly typed as emm stC839 and stC6979, respectively. Notably, these lineages exhibited a superior ability to adhere and invade airway cells. Furthermore, the dominant lineages were more prone to induce aversive olfactory learning and more likely to kill C. elegans. In the competitive fitness assays, they also showed increased adaptability. Consistent with the increased virulence observed in the ex vivo and in vivo models, the predominant lineages A and B showed a higher number of virulence-associated genes and a superior ability to accumulate biofilm.Conclusion. These results suggest strongly that this predominance did not occur randomly but rather was due to adaptive mechanisms that culminated in increased colonization and other bacterial properties that might confer increased bacteria-host adaptability to cause disease.
Collapse
Affiliation(s)
- Victor Lima Santos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Ligia Guedes Silva
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Caroline Lopes Martini
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Isis Hazelman V Anjos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Mariana Masello Maia
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Gabrielle L Genteluci
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Viviane Sant'Anna
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Ana Maria A Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - José Nelson S S Couceiro
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Agnes Marie Sá Figueiredo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | | |
Collapse
|
16
|
Jagau H, Behrens IK, Lahme K, Lorz G, Köster RW, Schneppenheim R, Obser T, Brehm MA, König G, Kohler TP, Rohde M, Frank R, Tegge W, Fulde M, Hammerschmidt S, Steinert M, Bergmann S. Von Willebrand Factor Mediates Pneumococcal Aggregation and Adhesion in Blood Flow. Front Microbiol 2019; 10:511. [PMID: 30972039 PMCID: PMC6443961 DOI: 10.3389/fmicb.2019.00511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pneumoniae is a major cause of community acquired pneumonia and septicaemia in humans. These diseases are frequently associated with thromboembolic cardiovascular complications. Pneumococci induce the exocytosis of endothelial Weibel-Palade Bodies and thereby actively stimulate the release of von Willebrand factor (VWF), which is an essential glycoprotein of the vascular hemostasis. Both, the pneumococcus induced pulmonary inflammation and the thromboembolytic complications are characterized by a dysbalanced hemostasis including a marked increase in VWF plasma concentrations. Here, we describe for the first time VWF as a novel interaction partner of capsulated and non-encapsulated pneumococci. Moreover, cell culture infection analyses with primary endothelial cells characterized VWF as bridging molecule that mediates bacterial adherence to endothelial cells in a heparin-sensitive manner. Due to the mechanoresponsive changes of the VWF protein conformation and multimerization status, which occur in the blood stream, we used a microfluidic pump system to generate shear flow-induced multimeric VWF strings on endothelial cell surfaces and analyzed attachment of RFP-expressing pneumococci in flow. By applying immunofluorescence visualization and additional electron microscopy, we detected a frequent and enduring bacterial attachment to the VWF strings. Bacterial attachment to the endothelium was confirmed in vivo using a zebrafish infection model, which is described in many reports and acknowledged as suitable model to study hemostasis mechanisms and protein interactions of coagulation factors. Notably, we visualized the recruitment of zebrafish-derived VWF to the surface of pneumococci circulating in the blood stream and detected a VWF-dependent formation of bacterial aggregates within the vasculature of infected zebrafish larvae. Furthermore, we identified the surface-exposed bacterial enolase as pneumococcal VWF binding protein, which interacts with the VWF domain A1 and determined the binding kinetics by surface plasmon resonance. Subsequent epitope mapping using an enolase peptide array indicates that the peptide 181YGAEIFHALKKILKS195 might serve as a possible core sequence of the VWF interaction site. In conclusion, we describe a VWF-mediated mechanism for pneumococcal anchoring within the bloodstream via surface-displayed enolase, which promotes intravascular bacterial aggregation.
Collapse
Affiliation(s)
- Hilger Jagau
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ina-Kristin Behrens
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Karen Lahme
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Georgina Lorz
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Reinhard W Köster
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf (UKE Hamburg), Hamburg, Germany
| | - Tobias Obser
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf (UKE Hamburg), Hamburg, Germany
| | - Maria A Brehm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf (UKE Hamburg), Hamburg, Germany
| | - Gesa König
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf (UKE Hamburg), Hamburg, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Universität Greifswald, Greifswald, Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research, Central Facility for Microscopy, Braunschweig, Germany
| | - Ronald Frank
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcus Fulde
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Universität Greifswald, Greifswald, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Simone Bergmann
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
17
|
Alves‐Barroco C, Roma‐Rodrigues C, Raposo LR, Brás C, Diniz M, Caço J, Costa PM, Santos‐Sanches I, Fernandes AR. Streptococcus dysgalactiae subsp. dysgalactiae isolated from milk of the bovine udder as emerging pathogens: In vitro and in vivo infection of human cells and zebrafish as biological models. Microbiologyopen 2019; 8:e00623. [PMID: 29577680 PMCID: PMC6341033 DOI: 10.1002/mbo3.623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is a major cause of bovine mastitis and has been regarded as an animal-restricted pathogen, although rare infections have been described in humans. Previous studies revealed the presence of virulence genes encoded by phages of the human pathogen Group A Streptococcus pyogenes (GAS) in SDSD isolated from the milk of bovine udder with mastitis. The isolates SDSD VSD5 and VSD13 could adhere and internalize human primary keratinocyte cells, suggesting a possible human infection potential of bovine isolates. In this work, the in vitro and in vivo potential of SDSD to internalize/adhere human cells of the respiratory track and zebrafish as biological models was evaluated. Our results showed that, in vitro, bovine SDSD strains could interact and internalize human respiratory cell lines and that this internalization was dependent on an active transport mechanism and that, in vivo, SDSD are able to cause invasive infections producing zebrafish morbidity and mortality. The infectious potential of these isolates showed to be isolate-specific and appeared to be independent of the presence or absence of GAS phage-encoded virulence genes. Although the infection ability of the bovine SDSD strains was not as strong as the human pathogenic S. pyogenes in the zebrafish model, results suggested that these SDSD isolates are able to interact with human cells and infect zebrafish, a vertebrate infectious model, emerging as pathogens with zoonotic capability.
Collapse
Affiliation(s)
- Cinthia Alves‐Barroco
- Departamento de Ciências da VidaFaculdade de Ciências e TecnologiaUCIBIOUniversidade Nova de LisboaCaparicaPortugal
| | - Catarina Roma‐Rodrigues
- Departamento de Ciências da VidaFaculdade de Ciências e TecnologiaUCIBIOUniversidade Nova de LisboaCaparicaPortugal
| | - Luís R. Raposo
- Departamento de Ciências da VidaFaculdade de Ciências e TecnologiaUCIBIOUniversidade Nova de LisboaCaparicaPortugal
| | - Catarina Brás
- Departamento de Ciências da VidaFaculdade de Ciências e TecnologiaUCIBIOUniversidade Nova de LisboaCaparicaPortugal
| | - Mário Diniz
- Departamento de QuímicaFaculdade de Ciências e TecnologiaUCIBIOUniversidade NOVA de LisboaCaparicaPortugal
| | - João Caço
- Departamento de Ciências da VidaFaculdade de Ciências e TecnologiaUCIBIOUniversidade Nova de LisboaCaparicaPortugal
| | - Pedro M. Costa
- Departamento de Ciências da VidaFaculdade de Ciências e TecnologiaUCIBIOUniversidade Nova de LisboaCaparicaPortugal
- MARE ‐ Marine and Environmental Sciences CentreDepartamento de Ciências e Engenharia do AmbienteFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
| | - Ilda Santos‐Sanches
- Departamento de Ciências da VidaFaculdade de Ciências e TecnologiaUCIBIOUniversidade Nova de LisboaCaparicaPortugal
| | - Alexandra R. Fernandes
- Departamento de Ciências da VidaFaculdade de Ciências e TecnologiaUCIBIOUniversidade Nova de LisboaCaparicaPortugal
| |
Collapse
|
18
|
Chennapragada SS, Ramphul K, Barnett BJ, Mejias SG, Lohana P. A Rare Case of Streptococcus dysgalactiae Subsp. Dysgalactiae Human Zoonotic Infection. Cureus 2018; 10:e2901. [PMID: 30186708 PMCID: PMC6122666 DOI: 10.7759/cureus.2901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Streptococcus dysgalactiae has two main subspecies: Streptococcus dysgalactiae subsp. equisimilus (SDSE) and Streptococcus dysgalactiae subsp. dysgalactiae (SDSD). The vast majority of human infections belonging to Streptococcus dysgalactiae have been associated with SDSE. There are only three cases of SDSD found in humans in literature. We present a case of SDSD cellulitis and bacteremia in a 49-year-old female patient from Houston, Texas with no major exposure to animals or trauma.
Collapse
Affiliation(s)
| | - Kamleshun Ramphul
- Pediatrics, Shanghai Jiao Tong University School of Medicine/Shanghai Xin Hua Hospital, Shanghai, CHN
| | - Ben J Barnett
- Internal Medicine, The University of Texas Health Science Center - Medical School, Houston, USA
| | - Stephanie G Mejias
- Pediatrics, The University Iberoamericana Unibe School of Medicine/Robert Reid Cabral Children's Hospital, Santo Domingo, DOM
| | - Petras Lohana
- Medicine, Liaquat University of Medical and Health Sciences Hospital, Karachi, PAK
| |
Collapse
|