1
|
Zheng C, Wei W, Wen J, Song W, Wu J, Wang R, Yin D, Chen X, Gao C, Liu J, Liu L. Rational Design of the Spatial Effect in a Fe(II)/α-Ketoglutarate-Dependent Dioxygenase Reverses the Regioselectivity of C(sp 3)-H Bond Hydroxylation in Aliphatic Amino Acids. Angew Chem Int Ed Engl 2024; 63:e202406060. [PMID: 38789390 DOI: 10.1002/anie.202406060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024]
Abstract
The hydroxylation of remote C(sp3)-H bonds in aliphatic amino acids yields crucial precursors for the synthesis of high-value compounds. However, accurate regulation of the regioselectivity of remote C(sp3)-H bonds hydroxylation in aliphatic amino acids continues to be a common challenge in chemosynthesis and biosynthesis. In this study, the Fe(II)/α-ketoglutarate-dependent dioxygenase from Bacillus subtilis (BlAH) was mined and found to catalyze hydroxylation at the γ and δ sites of aliphatic amino acids. Crystal structure analysis, molecular dynamics simulations, and quantum chemical calculations revealed that regioselectivity was regulated by the spatial effect of BlAH. Based on these results, the spatial effect of BlAH was reconstructed to stabilize the transition state at the δ site of aliphatic amino acids, thereby successfully reversing the γ site regioselectivity to the δ site. For example, the regioselectivity of L-Homoleucine (5 a) was reversed from the γ site (1 : 12) to the δ site (>99 : 1). The present study not only expands the toolbox of biocatalysts for the regioselective functionalization of remote C(sp3)-H bonds, but also provides a theoretical guidance for the precision-driven modification of similarly remote C(sp3)-H bonds in complex molecules.
Collapse
Affiliation(s)
- Chenni Zheng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ran Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dejing Yin
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Chao TH, Renata H. Chemoenzymatic Synthesis of 4,5-Dihydroxyisoleucine Fragment of α-Amanitin. Org Lett 2024; 26:3263-3266. [PMID: 38598422 DOI: 10.1021/acs.orglett.4c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The ability of α-amanitin to potently inhibit RNA polymerase II (RNAP II) has elicited further research into its use as a novel payload for antibody-drug conjugates. Despite this promise, the de novo synthesis of α-amanitin is still a major challenge as it possesses an unusual bicyclic octapeptide structure that contains several oxidized amino acids, most notably 4,5-dihydroxy-l-isoleucine. Here, we report a concise chemoenzymatic synthesis of this key amino acid residue, which features two regioselective and diastereoselective enzymatic C-H oxidations on l-isoleucine.
Collapse
Affiliation(s)
- Tsung-Han Chao
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Zwick CR, Renata H. Overview of Amino Acid Modifications by Iron- and α-Ketoglutarate-Dependent Enzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Biosynthesizing structurally diverse diols via a general route combining oxidative and reductive formations of OH-groups. Nat Commun 2022; 13:1595. [PMID: 35332143 PMCID: PMC8948231 DOI: 10.1038/s41467-022-29216-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 03/02/2022] [Indexed: 11/09/2022] Open
Abstract
Diols encompass important bulk and fine chemicals for the chemical, pharmaceutical and cosmetic industries. During the past decades, biological production of C3-C5 diols from renewable feedstocks has received great interest. Here, we elaborate a general principle for effectively synthesizing structurally diverse diols by expanding amino acid metabolism. Specifically, we propose to combine oxidative and reductive formations of hydroxyl groups from amino acids in a thermodynamically favorable order of four reactions catalyzed by amino acid hydroxylase, L-amino acid deaminase, α-keto acid decarboxylase and aldehyde reductase consecutively. The oxidative formation of hydroxyl group from an alkyl group is energetically more attractive than the reductive pathway, which is exclusively used in the synthetic pathways of diols reported so far. We demonstrate this general route for microbial production of branched-chain diols in E. coli. Ten C3-C5 diols are synthesized. Six of them, namely isopentyldiol (IPDO), 2-methyl-1,3-butanediol (2-M-1,3-BDO), 2-methyl-1,4-butanediol (2-M-1,4-BDO), 2-methyl-1,3-propanediol (MPO), 2-ethyl-1,3-propanediol (2-E-1,3-PDO), 1,4-pentanediol (1,4-PTD), have not been biologically synthesized before. This work opens up opportunities for synthesizing structurally diverse diols and triols, especially by genome mining, rational design or directed evolution of proper enzymes. Diols are important bulk and fine chemicals, but bioproduciton of branch-chain diols is hampered by the unknown biological route. Here, the authors report the expanding of amino acid metabolism for biosynthesis of branch-chain diols via a general route of combined oxidative and reductive formations of hydroxyl groups.
Collapse
|
5
|
Abstract
C–H functionalization is a chemically challenging but highly desirable transformation. 2-oxoglutarate-dependent oxygenases (2OGXs) are remarkably versatile biocatalysts for the activation of C–H bonds. In nature, they have been shown to accept both small and large molecules carrying out a plethora of reactions, including hydroxylations, demethylations, ring formations, rearrangements, desaturations, and halogenations, making them promising candidates for industrial manufacture. In this review, we describe the current status of 2OGX use in biocatalytic applications concentrating on 2OGX-catalyzed oxyfunctionalization of amino acids and synthesis of antibiotics. Looking forward, continued bioinformatic sourcing will help identify additional, practical useful members of this intriguing enzyme family, while enzyme engineering will pave the way to enhance 2OGX reactivity for non-native substrates.
Collapse
|
6
|
Abstract
2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.
Collapse
Affiliation(s)
- Md Saiful Islam
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Thomas M Leissing
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Rasheduzzaman Chowdhury
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Richard J Hopkinson
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; .,Current affiliation for Richard J. Hopkinson: Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom;
| | - Christopher J Schofield
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| |
Collapse
|
7
|
Enoki J, Meisborn J, Müller AC, Kourist R. A Multi-Enzymatic Cascade Reaction for the Stereoselective Production of γ-Oxyfunctionalyzed Amino Acids. Front Microbiol 2016; 7:425. [PMID: 27092111 PMCID: PMC4823265 DOI: 10.3389/fmicb.2016.00425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/16/2016] [Indexed: 11/26/2022] Open
Abstract
A stereoselective three-enzyme cascade for synthesis of diasteromerically pure γ-oxyfunctionalized α-amino acids was developed. By coupling a dynamic kinetic resolution (DKR) using an N-acylamino acid racemase (NAAAR) and an L-selective aminoacylase from Geobacillus thermoglucosidasius with a stereoselective isoleucine dioxygenase from Bacillus thuringiensis, diastereomerically pure oxidized amino acids were produced from racemic N-acetylamino acids. The three enzymes differed in their optimal temperature and pH-spectra. Their different metal cofactor dependencies led to inhibitory effects. Under optimized conditions, racemic N-acetylmethionine was quantitatively converted into L-methionine-(S)-sulfoxide with 97% yield and 95% de. The combination of these three different biocatalysts allowed the direct synthesis of diastereopure oxyfunctionalized amino acids from inexpensive racemic starting material.
Collapse
Affiliation(s)
- Junichi Enoki
- Faculty of Biology and Biotechnology, Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum Bochum, Germany
| | - Jaqueline Meisborn
- Faculty of Biology and Biotechnology, Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum Bochum, Germany
| | - Ann-Christin Müller
- Faculty of Biology and Biotechnology, Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum Bochum, Germany
| | - Robert Kourist
- Faculty of Biology and Biotechnology, Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
8
|
Exporters for Production of Amino Acids and Other Small Molecules. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:199-225. [PMID: 27832297 DOI: 10.1007/10_2016_32] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.
Collapse
|
9
|
Baud D, Saaidi PL, Monfleur A, Harari M, Cuccaro J, Fossey A, Besnard M, Debard A, Mariage A, Pellouin V, Petit JL, Salanoubat M, Weissenbach J, de Berardinis V, Zaparucha A. Synthesis of Mono- and Dihydroxylated Amino Acids with New α-Ketoglutarate-Dependent Dioxygenases: Biocatalytic Oxidation of CH Bonds. ChemCatChem 2014. [DOI: 10.1002/cctc.201402498] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Lanfermann I, Krings U, Schopp S, Berger RG. Isotope labelling experiments on the formation pathway of 3-hydroxy-4,5-dimethyl-2(5H)-furanone froml-isoleucine in cultures ofLaetiporus sulphureus. FLAVOUR FRAG J 2014. [DOI: 10.1002/ffj.3200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Isabel Lanfermann
- Institut für Lebensmittelchemie im Zentrum Angewandte Chemie; Gottfried-Wilhelm-Leibniz Universität Hannover; Callinstraße 5 D-30167 Hannover Germany
| | - Ulrich Krings
- Institut für Lebensmittelchemie im Zentrum Angewandte Chemie; Gottfried-Wilhelm-Leibniz Universität Hannover; Callinstraße 5 D-30167 Hannover Germany
| | - Silke Schopp
- Nestlé Product Technology Centre Lebensmittelforschung GmbH; Lange Str. 21 D-78221 Singen Germany
| | - Ralf G. Berger
- Institut für Lebensmittelchemie im Zentrum Angewandte Chemie; Gottfried-Wilhelm-Leibniz Universität Hannover; Callinstraße 5 D-30167 Hannover Germany
| |
Collapse
|