1
|
Tong L, Li Y, Lou X, Wang B, Jin C, Fang W. Powerful cell wall biomass degradation enzymatic system from saprotrophic Aspergillus fumigatus. Cell Surf 2024; 11:100126. [PMID: 38827922 PMCID: PMC11143905 DOI: 10.1016/j.tcsw.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Cell wall biomass, Earth's most abundant natural resource, holds significant potential for sustainable biofuel production. Composed of cellulose, hemicellulose, lignin, pectin, and other polymers, the plant cell wall provides essential structural support to diverse organisms in nature. In contrast, non-plant species like insects, crustaceans, and fungi rely on chitin as their primary structural polysaccharide. The saprophytic fungus Aspergillus fumigatus has been widely recognized for its adaptability to various environmental conditions. It achieves this by secreting different cell wall biomass degradation enzymes to obtain essential nutrients. This review compiles a comprehensive collection of cell wall degradation enzymes derived from A. fumigatus, including cellulases, hemicellulases, various chitin degradation enzymes, and other polymer degradation enzymes. Notably, these enzymes exhibit biochemical characteristics such as temperature tolerance or acid adaptability, indicating their potential applications across a spectrum of industries.
Collapse
Affiliation(s)
- Lige Tong
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yunaying Li
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Baoding, Hebei, China
| | - Xinke Lou
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Baoding, Hebei, China
| | - Bin Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Cheng Jin
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenxia Fang
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
2
|
Zhang X, Wen M, Li G, Wang S. Chitin Deacetylase Homologous Gene cda Contributes to Development and Aflatoxin Synthesis in Aspergillus flavus. Toxins (Basel) 2024; 16:217. [PMID: 38787069 PMCID: PMC11125919 DOI: 10.3390/toxins16050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The fungal cell wall serves as the primary interface between fungi and their external environment, providing protection and facilitating interactions with the surroundings. Chitin is a vital structural element in fungal cell wall. Chitin deacetylase (CDA) can transform chitin into chitosan through deacetylation, providing various biological functions across fungal species. Although this modification is widespread in fungi, the biological functions of CDA enzymes in Aspergillus flavus remain largely unexplored. In this study, we aimed to investigate the biofunctions of the CDA family in A. flavus. The A. flavus genome contains six annotated putative chitin deacetylases. We constructed knockout strains targeting each member of the CDA family, including Δcda1, Δcda2, Δcda3, Δcda4, Δcda5, and Δcda6. Functional analyses revealed that the deletion of CDA family members neither significantly affects the chitin content nor exhibits the expected chitin deacetylation function in A. flavus. However, the Δcda6 strain displayed distinct phenotypic characteristics compared to the wild-type (WT), including an increased conidia count, decreased mycelium production, heightened aflatoxin production, and impaired seed colonization. Subcellular localization experiments indicated the cellular localization of CDA6 protein within the cell wall of A. flavus filaments. Moreover, our findings highlight the significance of the CBD1 and CBD2 structural domains in mediating the functional role of the CDA6 protein. Overall, we analyzed the gene functions of CDA family in A. flavus, which contribute to a deeper understanding of the mechanisms underlying aflatoxin contamination and lay the groundwork for potential biocontrol strategies targeting A. flavus.
Collapse
Affiliation(s)
| | | | | | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.W.); (G.L.)
| |
Collapse
|
3
|
Mapuranga J, Chang J, Li H, Zhang Y, Li R, Song L, Zhang N, Yang W. The molecular structure, biological roles, and inhibition of plant pathogenic fungal chitin deacetylases. FRONTIERS IN PLANT SCIENCE 2024; 14:1335646. [PMID: 38264029 PMCID: PMC10803567 DOI: 10.3389/fpls.2023.1335646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
Chitin/polysaccharide deacetylases belong to the carbohydrate esterases family 4 (CE4 enzymes). They play a crucial role in modifying the physiochemical characteristics of structural polysaccharides and are also involved in a wide range of biological processes such as fungal autolysis, spore formation, cell wall formation and integrity, and germling adhesion. These enzymes are mostly common in fungi, marine bacteria, and a limited number of insects. They facilitate the deacetylation of chitin which is a structural biopolymer that is abundantly found in fungal cell walls and spores and also in the cuticle and peritrophic matrices of insects. The deacetylases exhibit specificity towards a substrate containing a sequence of four GlcNAc units, with one of these units being subjected to deacetylation. Chitin deacetylation results in the formation of chitosan, which is a poor substrate for host plant chitinases, therefore it can suppress the host immune response triggered by fungal pathogens and enhance pathogen virulence and colonization. This review discusses plant pathogenic fungal chitin/polysaccharide deacetylases including their structure, substrate specificity, biological roles and some recently discovered chitin deacetylase inhibitors that can help to mitigate plant fungal diseases. This review provides fundamental knowledge that will undoubtedly lead to the rational design of novel inhibitors that target pathogenic fungal chitin deacetylases, which will also aid in the management of plant diseases, thereby safeguarding global food security.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Yin L, Wang Q, Sun J, Mao X. Expression and Molecular Modification of Chitin Deacetylase from Streptomyces bacillaris. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010113. [PMID: 36615307 PMCID: PMC9822392 DOI: 10.3390/molecules28010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Chitin deacetylase can be used in the green and efficient preparation of chitosan from chitin. Herein, a novel chitin deacetylase SbCDA from Streptomyces bacillaris was heterologously expressed and comprehensively characterized. SbDNA exhibits its highest deacetylation activity at 35 °C and pH 8.0. The enzyme activity is enhanced by Mn2+ and prominently inhibited by Zn2+, SDS, and EDTA. SbCDA showed better deacetylation activity on colloidal chitin, (GlcNAc)5, and (GlcNAc)6 than other forms of the substrate. Molecular modification of SbCDA was conducted based on sequence alignment and homology modeling. A mutant SbCDA63G with higher activity and better temperature stability was obtained. The deacetylation activity of SbCDA63G was increased by 133% compared with the original enzyme, and the optimal reaction temperature increased from 35 to 40 °C. The half-life of SbCDA63G at 40 °C is 15 h, which was 5 h longer than that of the original enzyme. The improved characteristics of the chitin deacetylase SbCDA63G make it a potential candidate to industrially produce chitosan from chitin.
Collapse
Affiliation(s)
- Lili Yin
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Qi Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Jianan Sun
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Correspondence: (J.S.); (X.M.); Tel.: +86-532-82031360 (J.S.); +86-532-82032660 (X.M.)
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (J.S.); (X.M.); Tel.: +86-532-82031360 (J.S.); +86-532-82032660 (X.M.)
| |
Collapse
|
5
|
Ren D, Wang T, Zhou G, Ren W, Duan X, Gao L, Chen J, Xu L, Zhu P. Ethylene Promotes Expression of the Appressorium- and Pathogenicity-Related Genes via GPCR- and MAPK-Dependent Manners in Colletotrichum gloeosporioides. J Fungi (Basel) 2022; 8:jof8060570. [PMID: 35736053 PMCID: PMC9224669 DOI: 10.3390/jof8060570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
Ethylene (ET) represents a signal that can be sensed by plant pathogenic fungi to accelerate their spore germination and subsequent infection. However, the molecular mechanisms of responses to ET in fungi remain largely unclear. In this study, Colletotrichum gloeosporioides was investigated via transcriptomic analysis to reveal the genes that account for the ET-regulated fungal development and virulence. The results showed that ET promoted genes encoding for fungal melanin biosynthesis enzymes, extracellular hydrolases, and appressorium-associated structure proteins at 4 h after treatment. When the germination lasted until 24 h, ET induced multiple appressoria from every single spore, but downregulated most of the genes. Loss of selected ET responsive genes encoding for scytalone dehydratase (CgSCD1) and cerato-platanin virulence protein (CgCP1) were unable to alter ET sensitivity of C. gloeosporioides in vitro but attenuated the influence of ET on pathogenicity. Knockout of the G-protein-coupled receptors CgGPCR3-1/2 and the MAPK signaling pathway components CgMK1 and CgSte11 resulted in reduced ET sensitivity. Taken together, this study in C. gloeosporioides reports that ET can cause transcription changes in a large set of genes, which are mainly responsible for appressorium development and virulence expression, and these processes are dependent on the GPCR and MAPK pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling Xu
- Correspondence: (L.X.); (P.Z.); Tel.: +86-(021)-54341012 (L.X.); +86-(021)-24206574 (P.Z.)
| | - Pinkuan Zhu
- Correspondence: (L.X.); (P.Z.); Tel.: +86-(021)-54341012 (L.X.); +86-(021)-24206574 (P.Z.)
| |
Collapse
|
6
|
Pascual S, Planas A. Carbohydrate de-N-acetylases acting on structural polysaccharides and glycoconjugates. Curr Opin Chem Biol 2020; 61:9-18. [PMID: 33075728 DOI: 10.1016/j.cbpa.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Deacetylation of N-acetylhexosamine residues in structural polysaccharides and glycoconjugates is catalyzed by different families of carbohydrate esterases that, despite different structural folds, share a common metal-assisted acid/base mechanism with the metal cation coordinated with a conserved Asp-His-His triad. These enzymes serve diverse biological functions in the modification of cell-surface polysaccharides in bacteria and fungi as well as in the metabolism of hexosamines in the biosynthesis of cellular glycoconjugates. Focusing on carbohydrate de-N-acetylases, this article summarizes the background of the different families from a structural and functional viewpoint and covers advances in the characterization of novel enzymes over the last 2-3 years. Current research is addressed to the identification of new deacetylases and unravel their biological functions as they are candidate targets for the design of antimicrobials against pathogenic bacteria and fungi. Likewise, some families are also used as biocatalysts for the production of defined glycostructures with diverse applications.
Collapse
Affiliation(s)
- Sergi Pascual
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017, Barcelona, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017, Barcelona, Spain.
| |
Collapse
|
7
|
Xie M, Zhao X, Lü Y, Jin C. Chitin deacetylases Cod4 and Cod7 are involved in polar growth of Aspergillus fumigatus. Microbiologyopen 2019; 9:e00943. [PMID: 31602821 PMCID: PMC6957412 DOI: 10.1002/mbo3.943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/07/2019] [Accepted: 09/16/2019] [Indexed: 01/01/2023] Open
Abstract
Chitin is one of the key components of fungal cell wall, and chitin deacetylases (CDAs) have been found in fungi; however, their functions remain unknown. Aspergillus fumigatus is known to cause fatal invasive aspergillosis (IA) among immunocompromised patients with a high mortality rate. Although the A. fumigatus cell wall has long been taken as a unique target for drug development, its dynamic remodeling is complicated and not well understood. Seven putative CDAs are annotated in the A. fumigatus genome. In this study, we analyzed the function of the putative CDAs, Cod4 and Cod7, in A. fumigatus. Biochemical analysis of recombinant proteins showed that Cod4 preferentially deacetylated (GlcNAc)4 and was less active on chitooligosaccharides with DP > 5, whereas Cod7 was unable to catalyze deacetylation. Simulation of three‐dimensional structure revealed that both Cod4 and Cod7 shared a similar folding pattern with HyPgdA from Helicobacter pylori and, similar to HyPgdA, a substitution of Thr8 by Ala8 in Cod7 abolished its CDA activity. Deletion of the cod4, cod7, or both in A. fumigatus led to polarity abnormality and increased conidiation. Furthermore, the expression level of the genes related to polarity was upregulated in the mutants. Our results demonstrated that Cod4 and Cod7 were involved in polarity, though Cod4 was inactive.
Collapse
Affiliation(s)
- Mingming Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Yang Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,National Engineering Research Center for Non-food Bio-refinery, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|