1
|
Sharma J, Prabha P, Sharma R, Gupta S, Dixit A. Anti-leukemic principle(s) from Momordica charantia seeds induce differentiation of HL-60 cells through ERK/MAPK signalling pathway. Cytotechnology 2022; 74:591-611. [PMID: 36238266 PMCID: PMC9525536 DOI: 10.1007/s10616-022-00547-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Myeloid leukemia is one of the major causes of deaths among elderly with very poor prognosis. Due to the adverse effects of existing chemotherapeutic agents, plant-derived components are being screened for their anti-leukemic potential. Momordica charantia (bitter gourd) possesses a variety of therapeutic activities. We have earlier demonstrated anti-leukemic activity of acetone extract of M. charantia seeds. The present study reports purification of differentiation inducing principle(s) from further fractionated seed extract (hexane fraction of the acetone extract, Mc2-Ac-hex) using HL-60 cells. Out of the 5 peak fractions (P1-P5) obtained from normal phase HPLC of the Mc2-Ac-hex, only peak fraction 3 (P3) induced differentiation of HL-60 cells as evident from an increase in NBT-positive cells and increased expression of cell surface marker CD11b. The P3 differentiated the HL-60 cells to granulocytic lineage, established by increased CD15 (granulocytic cell surface marker) expression in the treated cells. Further, possible molecular mechanism and the signalling pathway involved in the differentiation of HL-60 cells were also investigated. Use of specific signalling pathway inhibitors in the differentiation study, and proteome array analysis of the treated cells collectively revealed the involvement the of ERK/MAPK mediated pathway. Partial characterization of the P3 by GC-MS analysis revealed the presence of dibutyl phthalate, and derivatives of 2,5-dihydrofuran to be the highest among the 5 identified compounds. This study thus demonstrated that purified differentiation-inducing principle(s) from M. charantia seed extract induce HL-60 cells to granulocytic lineage through ERK/MAPK signalling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00547-x.
Collapse
Affiliation(s)
- Jeetesh Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Punit Prabha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Rohit Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Shalini Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Aparna Dixit
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
2
|
Koessler J, Schuepferling A, Klingler P, Koessler A, Weber K, Boeck M, Kobsar A. The role of proteasome activity for activating and inhibitory signalling in human platelets. Cell Signal 2019; 62:109351. [PMID: 31260799 DOI: 10.1016/j.cellsig.2019.109351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/29/2022]
Abstract
Platelets express key proteins of the proteasome system, but its functional role in the regulation of platelet integrity, however, is not fully understood yet. Therefore, this study evaluated activating and inhibitory platelet signalling pathways using the potent and selective proteasome inhibitor bortezomib. In washed platelets, the effect of bortezomib on viability and on aggregation was assessed. In addition, fibrinogen binding and CD62P expression were determined. The influence on activating and inhibitory signalling was detected by phosphorylation levels of essential messenger molecules. Platelet viability was maintained after incubation with 0.01 μM to 1 μM bortezomib, but tampered with 100 μM bortezomib. Agonist-induced aggregation was only reduced under 100 μM bortezomib and with weak induction by 10 μM adenosine diphosphate. Similarly, phosphorylated kinase levels of the activating signalling pathways were not affected by 0.01 μM to 1 μM bortezomib. In contrast, proteasome inhibition resulted in the reduction of inhibitor-induced vasodilator-stimulated phosphoprotein phosphorylation, accompanied with the partial decrease of induced inhibition of fibrinogen binding and CD62P expression. In conclusion, platelet activation and aggregation are not dependent on proteasome activity. Instead, inhibitory signalling is partially attenuated under proteasome inhibition. Supramaximal inhibitory concentrations of bortezomib (above 1 μM) lead to heterogeneous effects on activating or inhibitory systems, probably caused by decreasing platelet viability.
Collapse
Affiliation(s)
- Juergen Koessler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Anne Schuepferling
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany
| | - Philipp Klingler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Angela Koessler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Katja Weber
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Markus Boeck
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Anna Kobsar
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| |
Collapse
|
3
|
Hu S, Ueda M, Stetson L, Ignatz-Hoover J, Moreton S, Chakrabarti A, Xia Z, Karan G, de Lima M, Agrawal MK, Wald DN. A Novel Glycogen Synthase Kinase-3 Inhibitor Optimized for Acute Myeloid Leukemia Differentiation Activity. Mol Cancer Ther 2016; 15:1485-1494. [PMID: 27196775 DOI: 10.1158/1535-7163.mct-15-0566] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/06/2016] [Indexed: 11/16/2022]
Abstract
Standard therapies used for the treatment of acute myeloid leukemia (AML) are cytotoxic agents that target rapidly proliferating cells. Unfortunately, this therapeutic approach has limited efficacy and significant toxicity and the majority of AML patients still die of their disease. In contrast to the poor prognosis of most AML patients, most individuals with a rare subtype of AML, acute promyelocytic leukemia, can be cured by differentiation therapy using regimens containing all-trans retinoic acid. GSK3 has been previously identified as a therapeutic target in AML where its inhibition can lead to the differentiation and growth arrest of leukemic cells. Unfortunately, existing GSK3 inhibitors lead to suboptimal differentiation activity making them less useful as clinical AML differentiation agents. Here, we describe the discovery of a novel GSK3 inhibitor, GS87. GS87 was discovered in efforts to optimize GSK3 inhibition for AML differentiation activity. Despite GS87's dramatic ability to induce AML differentiation, kinase profiling reveals its high specificity in targeting GSK3 as compared with other kinases. GS87 demonstrates high efficacy in a mouse AML model system and unlike current AML therapeutics, exhibits little effect on normal bone marrow cells. GS87 induces potent differentiation by more effectively activating GSK3-dependent signaling components including MAPK signaling as compared with other GSK3 inhibitors. GS87 is a novel GSK3 inhibitor with therapeutic potential as a differentiation agent for non-promyelocytic AML. Mol Cancer Ther; 15(7); 1485-94. ©2016 AACR.
Collapse
Affiliation(s)
- Sophia Hu
- Department of Pathology Case Western Reserve University
| | | | | | | | | | - Amit Chakrabarti
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio
| | - Zhiqiang Xia
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio
| | - Goutam Karan
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio
| | | | - Mukesh K Agrawal
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio.,MirX Pharmaceuticals Cleveland, Ohio
| | - David N Wald
- Department of Pathology Case Western Reserve University.,University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio.,University Hospitals Case Medical Center, Cleveland, Ohio
| |
Collapse
|
4
|
Abstract
Nasopharyngeal carcinoma (NPC), a distinct type of head and neck cancer, is prevalent in Southeast Asia and southern China. Ethnic background and environmental factors contribute to the development of NPC, further complicating its pathogenesis. An increasing body of evidence indicates that microRNAs (miRNAs) play an important role in the development and progression of NPC, in particular, 32 miRNAs are involved in NPC tumorigenesis, progression, and metastasis. The causal involvement of miRNAs in NPC and their possible use as biomarkers have been extensively studied with promising results, demonstrating the diagnostic and therapeutic potential of miRNAs in NPC. In this review, we summarize the role of all the known miRNAs involved in the signaling pathway implicated in NPC.
Collapse
|
5
|
Sequential treatment with aurora B inhibitors enhances cisplatin-mediated apoptosis via c-Myc. J Mol Med (Berl) 2014; 93:427-38. [PMID: 25411027 DOI: 10.1007/s00109-014-1228-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/13/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED Platinum compound such as cisplatin is the first-line chemotherapy of choice in most patients with ovarian carcinoma. However, patients with inherent or acquired cisplatin resistance often experience relapse. Therefore, novel therapies are urgently required to treat drug-resistant ovarian carcinoma. Here, we showed that compared to the non-functional traditional simultaneous treatment, sequential combination of Aurora B inhibitors followed by cisplatin synergistically enhanced apoptotic response in cisplatin-resistant OVCAR-8 cells. This effect was accompanied by the induction of polyploidy in a c-Myc-dependent manner, as c-Myc knockdown reduced the efficacy of the combination by suppressing the expression of Aurora B and impairing cellular response to Aurora B inhibitor, as indicated by the decreased polyploidy and hyperphosphorylation of histone H1. In c-Myc-deficient SKOV3 cells, c-Myc overexpression restored Aurora B expression, induced polyploidy after inhibition of Aurora B, and sensitized cells to this combination therapy. Thus, our report reveals for the first time that sequential treatment of Aurora B inhibitors and cisplatin is essential to inhibit ovarian carcinoma by inducing polyploidy and downregulating c-Myc and that c-Myc is identified as a predictive biomarker to select cells responsive to chemotherapeutical combinations targeting Aurora B. Collectively, these studies provide novel approaches to overcoming cisplatin chemotherapy resistance in ovarian cancer. KEY MESSAGE Pretreatment of Aurora B inhibitors augment apoptotic effects of cisplatin. The synergy of Aurora B inhibitor with cisplatin is dependent on c-Myc expression. c-Myc-dependent induction of polyploidy sensitizes cells to cisplatin.
Collapse
|
6
|
Tao Y, Gao L, Wu X, Wang H, Yang G, Zhan F, Shi J. Down-regulation of 11β-hydroxysteroid dehydrogenase type 2 by bortezomib sensitizes Jurkat leukemia T cells against glucocorticoid-induced apoptosis. PLoS One 2013; 8:e67067. [PMID: 23826195 PMCID: PMC3691151 DOI: 10.1371/journal.pone.0067067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/13/2013] [Indexed: 02/06/2023] Open
Abstract
11β-hydroxysteroid dehydrogenases type 2 (11β-HSD2), a key regulator for pre-receptor metabolism of glucocorticoids (GCs) by converting active GC, cortisol, to inactive cortisone, has been shown to be present in a variety of tumors. But its expression and roles have rarely been discussed in hematological malignancies. Proteasome inhibitor bortezomib has been shown to not only possess antitumor effects but also potentiate the activity of other chemotherapeutics. In this study, we demonstrated that 11β-HSD2 was highly expressed in two GC-resistant T-cell leukemic cell lines Jurkat and Molt4. In contrast, no 11β-HSD2 expression was found in two GC-sensitive non-hodgkin lymphoma cell lines Daudi and Raji as well as normal peripheral blood T cells. Inhibition of 11β-HSD2 by 11β-HSD inhibitor 18β-glycyrrhetinic acid or 11β-HSD2 shRNA significantly increased cortisol-induced apoptosis in Jurkat cells. Additionally, pretreatment of Jurkat cells with low-dose bortezomib resulted in increased cellular sensitivity to GC as shown by elevated induction of apoptosis, more cells arrested at G1 stage and up-regulation of GC-induced leucine zipper which is an important mediator of GC action. Furthermore, we clarified that bortezomib could dose-dependently inhibit 11β-HSD2 messenger RNA and protein levels as well as activity (cortisol-cortisone conversion) through p38 mitogen-activated protein kinase signaling pathway. Therefore, we suggest 11β-HSD2 is, at least partially if not all, responsible for impaired GC suppression in Jurkat cells and also indicate a novel mechanism by which proteasome inhibitor bortezomib may influence GC action.
Collapse
Affiliation(s)
- Yi Tao
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai, People’s Republic of China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Hongmei Wang
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
7
|
Hassan M, Selimovic D, El-Khattouti A, Ghozlan H, Haikel Y, Abdelkader O. Hepatitis C virus-host interactions: Etiopathogenesis and therapeutic strategies. World J Exp Med 2012; 2:7-25. [PMID: 24520529 PMCID: PMC3905577 DOI: 10.5493/wjem.v2.i2.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a significant health problem facing the world. This virus infects more than 170 million people worldwide and is considered the major cause of both acute and chronic hepatitis. Persons become infected mainly through parenteral exposure to infected material by blood transfusions or injections with nonsterile needles. Although the sexual behavior is considered as a high risk factor for HCV infection, the transmission of HCV infection through sexual means, is less frequently. Currently, the available treatment for patients with chronic HCV infection is interferon based therapies alone or in combination with ribavirin and protease inhibitors. Although a sustained virological response of patients to the applied therapy, a great portion of patients did not show any response. HCV infection is mostly associated with progressive liver diseases including fibrosis, cirrhosis and hepatocellular carcinoma. Although the focus of many patients and clinicians is sometimes limited to that problem, the natural history of HCV infection (HCV) is also associated with the development of several extrahepatic manifestations including dermatologic, rheumatologic, neurologic, and nephrologic complications, diabetes, arterial hypertension, autoantibodies and cryglobulins. Despite the notion that HCV-mediated extrahepatic manifestations are credible, the mechanism of their modulation is not fully described in detail. Therefore, the understanding of the molecular mechanisms of HCV-induced alteration of intracellular signal transduction pathways, during the course of HCV infection, may offer novel therapeutic targets for HCV-associated both hepatic and extrahepatic manifestations. This review will elaborate the etiopathogenesis of HCV-host interactions and summarize the current knowledge of HCV-associated diseases and their possible therapeutic strategies.
Collapse
Affiliation(s)
- Mohamed Hassan
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Denis Selimovic
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Abdelouahid El-Khattouti
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Hanan Ghozlan
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Youssef Haikel
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Ola Abdelkader
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| |
Collapse
|