1
|
Hasani S, Fathabadi F, Saeidi S, Mohajernoei P, Hesari Z. The role of NFATc1 in the progression and metastasis of prostate cancer: A review on the molecular mechanisms and signaling pathways. Cell Biol Int 2023; 47:1895-1904. [PMID: 37814550 DOI: 10.1002/cbin.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/27/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
A common type of cancer among men is the prostate cancer that kills many people every year. The multistage of this disease and the involvement of the vital organs of the body have reduced the life span and quality of life of the people involved and turned the treatment process into a complex one. NFATc1 biomarker contributes significantly in the diagnosis and treatment of this disease by increasing its expression in prostate cancer and helping the proliferation, differentiation, and invasion of cancer cells through different signaling pathways. NFATc1 is also able to target the metabolism of cancer cells by inserting specific oncogene molecules such as c-myc that it causes cell growth and proliferation. Bone is a common tissue where prostate cancer cells metastasize. In this regard, the activity of NFATc1, through the regulation of different signaling cascades, including the RANKL/RANK signaling pathway, in turn, increases the activity of osteoclasts, and as a result, bone tissue is gradually ruined. Using Silibinin as a medicinal plant extract can inhibit the activity of osteoclasts related to prostate cancer by targeting NFATc. Undoubtedly, NFATc1 is one of the effective oncogenes related to prostate cancer, which has the potential to put this cancer on the path of progression and metastasis. In this review, we will highlight the role of NFATc1 in the progression and metastasis of prostate cancer. Furthermore, we will summarize signaling pathways and molecular mechanism, through which NFATc1 regulates the process of prostate cancer.
Collapse
Affiliation(s)
- Samaneh Hasani
- Department of Nursing, Faculty of Medical Sciences, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Farshid Fathabadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saman Saeidi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pouya Mohajernoei
- Department of Medicine and Surgery, Università degli Studi di Padova, Padua, Italy
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
2
|
Liu F, Chen F, Yang L, Qiu F, Zhong G, Gao S, Xi W, Lai M, He Q, Chen Y, Chen W, Zhang J, Yang L. Melittin acupoint injection in attenuating bone erosion in collagen-induced arthritis mice via inhibition of the RANKL/NF-κB signaling pathway. Quant Imaging Med Surg 2023; 13:5996-6013. [PMID: 37711782 PMCID: PMC10498218 DOI: 10.21037/qims-23-254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/06/2023] [Indexed: 09/16/2023]
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease leading to chronic joint inflammation. Bone erosion is the most serious pathological condition of RA and the main cause of joint deformities and disability. Melittin acupoint injection (MAI) is an effective traditional Chinese medicine (TCM) method for RA treatment. This study aimed to investigate the effect of MAI on RA bone erosion and to elucidate the underlying mechanism. Methods A collagen-induced arthritis (CIA) mouse model was established as the experimental subject. MAI was administrated once every other day for 28 days to mice with CIA. The effects of MAI on joint diseases were assessed by body weight, arthritis index (AI) score, swollen joint count (SJC) score, and hind paw thickness. Ankle radiological changes were captured by micro-computed tomography (micro-CT) and histological changes were observed by pathological staining. Organ histological changes, spleen index, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and creatinine (Crea) levels of serum were tested to evaluate the toxicity of MAI. Cytokine expression levels were confirmed by enzyme-linked immunosorbent assay (ELISA) to evaluate the immunity of CIA mice. Results MAI administration markedly improved the clinical signs of CIA in mice, including hind paw thickness, AI, and the number of swollen paw joints (most of them P<0.05 or even <0.01). According to histopathological analysis, MAI ameliorated inflammatory cell infiltration, synovial hyperplasia, pannus formation, and bone erosion (all P<0.01). Micro-CT and tartrate-resistant acid phosphatase (TRAP) staining (P<0.01) also revealed that MAI could relieve bone erosion via reducing the formation of osteoclasts. Not only could MAI relieve the immunological boost [P<0.05 for the high-dose MAI (HM) group], but also it had no liver or kidney side effects (P>0.05). In addition, it decreased the serum levels of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) and increased the serum levels of IL-4 and IL-10 (the majority of P<0.05 or even <0.01). Transcriptome sequencing results indicated that MAI affected the expression of osteoclast differentiation pathway genes, which was connected with the receptor activator of the nuclear factor κB ligand/nuclear factor kappa B (RANKL/NF-κB) pathway. Conclusions Based on our findings, MAI could suppress joint inflammation and inhibit RANKL/NF-κB-mediated osteoclast differentiation to rescue bone erosion in CIA mice, suggesting that MAI can be a potentially therapeutic substance for RA.
Collapse
Affiliation(s)
- Fenfang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fen Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Le Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fucheng Qiu
- Intensive Care Unit, Foshan Hospital of TCM, Foshan, China
| | - Guangen Zhong
- Department of Acupuncture and Rehabilitation, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shan Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weizhe Xi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Meilian Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiting He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ying Chen
- Department of Acupuncture and Rehabilitation, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weiming Chen
- Department of Acupuncture and Rehabilitation, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lu Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Acupuncture and Rehabilitation, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Olędzka AJ, Czerwińska ME. Role of Plant-Derived Compounds in the Molecular Pathways Related to Inflammation. Int J Mol Sci 2023; 24:ijms24054666. [PMID: 36902097 PMCID: PMC10003729 DOI: 10.3390/ijms24054666] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Inflammation is the primary response to infection and injury. Its beneficial effect is an immediate resolution of the pathophysiological event. However, sustained production of inflammatory mediators such as reactive oxygen species and cytokines may cause alterations in DNA integrity and lead to malignant cell transformation and cancer. More attention has recently been paid to pyroptosis, which is an inflammatory necrosis that activates inflammasomes and the secretion of cytokines. Taking into consideration that phenolic compounds are widely available in diet and medicinal plants, their role in the prevention and support of the treatment of chronic diseases is apparent. Recently, much attention has been paid to explaining the significance of isolated compounds in the molecular pathways related to inflammation. Therefore, this review aimed to screen reports concerning the molecular mode of action assigned to phenolic compounds. The most representative compounds from the classes of flavonoids, tannins, phenolic acids, and phenolic glycosides were selected for this review. Our attention was focused mainly on nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinase (MAPK) signaling pathways. Literature searching was performed using Scopus, PubMed, and Medline databases. In conclusion, based on the available literature, phenolic compounds regulate NF-κB, Nrf2, and MAPK signaling, which supports their potential role in chronic inflammatory disorders, including osteoarthritis, neurodegenerative diseases, cardiovascular, and pulmonary disorders.
Collapse
Affiliation(s)
- Agata J. Olędzka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-116-61-85
| |
Collapse
|
4
|
Marouf BH, Ismaeel DO, Hassan AH, Ali OJ. Therapeutic Effects of Silibinin Against Polycystic Ovary Syndrome Induced by Letrozole in Rats via Its Potential Anti-Inflammatory and Anti-Oxidant Activities. J Inflamm Res 2022; 15:5185-5199. [PMID: 36110507 PMCID: PMC9469941 DOI: 10.2147/jir.s379725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Current therapies for polycystic ovary syndrome (PCOS) are accompanied by unwanted effects. Silibinin; a flavonolignan has pleiotropic activities and favorable safety profile. Purpose To investigate the efficacy of silibinin on estrous cyclicity, inflammation, oxidative stress and ovarian morphology in letrozole-induced PCOS in rats. Methods Forty-eight female Wistar albino rats were divided into 2 sets. Rats of the first set (n = 12), assigned as a negative control (NC) received only the vehicle, rats of the second set (n = 36), assigned as PCOS rats, were given letrozole 1mg/Kg orally for 21 days. On day 21, six rats from the first set and six rats from the second set were euthanized for confirmation of PCOS-induction. The remaining animals from the first set assigned as group 1, those in the second set (n = 30) were equally divided into 5 groups and treated daily for 19 days as follows: group 2 (positive control) received only the vehicle, group 3 treated with metformin 300mg/Kg orally, groups 4 and 5 treated respectively with 100 and 200 mg/Kg silibinin intraperitoneally (IP), and group 6 treated with a combination of metformin 300mg/Kg orally and silibinin 100mg/Kg IP. On day 40, blood samples were examined for luteinizing hormone (LH), testosterone (TS) and estradiol (EST) levels, the anti-inflammatory and antioxidant parameters, ovarian and uterine morphology. Results Silibinin alone or in combination with metformin was found to be effective in restoring the regularity of estrous cycle by ameliorating the abnormal alterations of LH, TS, EST, tumor necrosis factor (TNF)-α, and oxidative status and by resuming the appearance of corpora lutea and decreasing or even total absence of cystic follicles in the ovaries. Conclusion Silibinin was effective in restoring estrous regularities and alleviating hormonal and histomorphological abnormalities of the ovarian and uterine tissues, this could be due to its anti-androgenic, anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Bushra Hassan Marouf
- Department of Pharmacology and Toxicology- College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Dana Omer Ismaeel
- Department of Surgery and Theriogenology- College of Veterinary Medicine, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Ali Hussein Hassan
- Department of Basic Sciences- College of Dentistry, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq.,Department of Medical Laboratory Sciences- Komar University of Science and Technology, Sulaimani, Kurdistan Region, Iraq
| | - Othman Jalal Ali
- Department of Surgery and Theriogenology- College of Veterinary Medicine- University of Sulaimani, Sulaimani, Kurdistan Region, Iraq.,Department of Anaesthesia, College of Health Science, Cihan University of Sulaimaniya, Sulaimani, Kurdistan Region, Iraq
| |
Collapse
|
5
|
Hao Q, Wu Y, Vadgama JV, Wang P. Phytochemicals in Inhibition of Prostate Cancer: Evidence from Molecular Mechanisms Studies. Biomolecules 2022; 12:1306. [PMID: 36139145 PMCID: PMC9496067 DOI: 10.3390/biom12091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Prostate cancer is one of the leading causes of death for men worldwide. The development of resistance, toxicity, and side effects of conventional therapies have made prostate cancer treatment become more intensive and aggressive. Many phytochemicals isolated from plants have shown to be tumor cytotoxic. In vitro laboratory studies have revealed that natural compounds can affect cancer cell proliferation by modulating many crucial cellular signaling pathways frequently dysregulated in prostate cancer. A multitude of natural compounds have been found to induce cell cycle arrest, promote apoptosis, inhibit cancer cell growth, and suppress angiogenesis. In addition, combinatorial use of natural compounds with hormone and/or chemotherapeutic drugs seems to be a promising strategy to enhance the therapeutic effect in a less toxic manner, as suggested by pre-clinical studies. In this context, we systematically reviewed the currently available literature of naturally occurring compounds isolated from vegetables, fruits, teas, and herbs, with their relevant mechanisms of action in prostate cancer. As there is increasing data on how phytochemicals interfere with diverse molecular pathways in prostate cancer, this review discusses and emphasizes the implicated molecular pathways of cell proliferation, cell cycle control, apoptosis, and autophagy as important processes that control tumor angiogenesis, invasion, and metastasis. In conclusion, the elucidation of the natural compounds' chemical structure-based anti-cancer mechanisms will facilitate drug development and the optimization of drug combinations. Phytochemicals, as anti-cancer agents in the treatment of prostate cancer, can have significant health benefits for humans.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Piwen Wang
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
6
|
KYMASIN UP Natural Product Inhibits Osteoclastogenesis and Improves Osteoblast Activity by Modulating Src and p38 MAPK. Nutrients 2022; 14:nu14153053. [PMID: 35893905 PMCID: PMC9370798 DOI: 10.3390/nu14153053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
The imbalance in osteoblast (OB)-dependent bone formation in favor of osteoclast (OC)-dependent bone resorption is the main cause of loss of tissue mineral mass during bone remodeling leading to osteoporosis conditions. Thus, the suppression of OC activity together with the improvement in the OB activity has been proposed as an effective therapy for maintaining bone mass during aging. We tested the new dietary product, KYMASIN UP containing standardized Withania somnifera, Silybum marianum and Trigonella foenum-graecum herbal extracts or the single extracts in in vitro models mimicking osteoclastogenesis (i.e., RAW 264.7 cells treated with RANKL, receptor activator of nuclear factor kappa-Β ligand) and OB differentiation (i.e., C2C12 myoblasts treated with BMP2, bone morphogenetic protein 2). We found that the dietary product reduces RANKL-dependent TRAP (tartrate-resistant acid phosphatase)-positive cells (i.e., OCs) formation and TRAP activity, and down-regulates osteoclastogenic markers by reducing Src (non-receptor tyrosine kinase) and p38 MAPK (mitogen-activated protein kinase) activation. Withania somnifera appears as the main extract responsible for the anti-osteoclastogenic effect of the product. Moreover, KYMASIN UP maintains a physiological release of the soluble decoy receptor for RANKL, OPG (osteoprotegerin), in osteoporotic conditions and increases calcium mineralization in C2C12-derived OBs. Interestingly, KYMASIN UP induces differentiation in human primary OB-like cells derived from osteoporotic subjects. Based on our results, KYMASIN UP or Withania somnifera-based dietary supplements might be suggested to reverse the age-related functional decline of bone tissue by re-balancing the activity of OBs and OCs, thus improving the quality of life in the elderly and reducing social and health-care costs.
Collapse
|
7
|
Fu X, Sun X, Zhang C, Lv N, Guo H, Xing C, Lv J, Wu J, Zhu X, Liu M, Su L. Genkwanin Prevents Lipopolysaccharide-Induced Inflammatory Bone Destruction and Ovariectomy-Induced Bone Loss. Front Nutr 2022; 9:921037. [PMID: 35811983 PMCID: PMC9260391 DOI: 10.3389/fnut.2022.921037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives The first objective of this study was to probe the effects of genkwanin (GKA) on osteoclast. The second goal of this study was to study whether GKA can protect lipopolysaccharide (LPS) and ovariectomized (OVX) induced bone loss. Materials and Methods Various concentrations of GKA (1 and 10 mg/kg) were injected into mice. Different concentrations of GKA (1 and 5 μM) were used to detect the effects of GKA on osteoclast and osteoblast. Key Findings GKA attenuated the osteoclast differentiation promoted by RANKL and expression of marker genes containing c-fos, ctsk as well as bone resorption related gene Trap and to the suppression of MAPK signaling pathway. In addition, GKA induced BMMs cell apoptosis in vitro. Moreover, GKA prevented LPS-induced and ovariectomized-induced bone loss in mice. Conclusion Our research revealed that GKA had a potential to be an effective therapeutic agent for osteoclast-mediated osteoporosis.
Collapse
Affiliation(s)
- Xin Fu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaochen Sun
- School of Medicine, Shanghai University, Shanghai, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Nanning Lv
- Lianyungang Second People’s Hospital, Lianyungang, China
- Lianyungang Clinical School of Xuzhou Medical University, Lianyungang, China
| | - Huan Guo
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiwen Wu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Xiaoli Zhu,
| | - Mingming Liu
- Lianyungang Second People’s Hospital, Lianyungang, China
- Lianyungang Clinical School of Xuzhou Medical University, Lianyungang, China
- Mingming Liu,
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Li Su,
| |
Collapse
|
8
|
Darvishi-Khezri H. Can silymarin ameliorate β-thalassemia major-induced osteopenia/osteoporosis? JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:471-472. [PMID: 34036762 DOI: 10.1515/jcim-2020-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/12/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Hadi Darvishi-Khezri
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| |
Collapse
|
9
|
Elyasi S. Silybum marianum, antioxidant activity, and cancer patients. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Tuli HS, Mittal S, Aggarwal D, Parashar G, Parashar NC, Upadhyay SK, Barwal TS, Jain A, Kaur G, Savla R, Sak K, Kumar M, Varol M, Iqubal A, Sharma AK. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Semin Cancer Biol 2020; 73:196-218. [PMID: 33130037 DOI: 10.1016/j.semcancer.2020.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
In the last few decades, targeting cancer by the use of dietary phytochemicals has gained enormous attention. The plausible reason and believe or mind set behind this fact is attributed to either lesser or no side effects of natural compounds as compared to the modern chemotherapeutics, or due to their conventional use as dietary components by mankind for thousands of years. Silibinin is a naturally derived polyphenol (a flavonolignans), possess following biochemical features; molecular formula C25H22O10, Molar mass: 482.44 g/mol, Boiling point 793 °C, with strikingly high antioxidant and anti-tumorigenic properties. The anti-cancer properties of Silibinin are determined by a variety of cellular pathways which include induction of apoptosis, cell cycle arrest, inhibition of angiogenesis and metastasis. In addition, Silibinin controls modulation of the expression of aberrant miRNAs, inflammatory response, and synergism with existing anti-cancer drugs. Therefore, modulation of a vast array of cellular responses and homeostatic aspects makes Silibinin an attractive chemotherapeutic agent. However, like other polyphenols, the major hurdle to declare Silibinin a translational chemotherapeutic agent, is its lesser bioavailability. After summarizing the chemistry and metabolic aspects of Silibinin, this extensive review focuses on functional aspects governed by Silibinin in chemoprevention with an ultimate goal of summarizing the evidence supporting the chemopreventive potential of Silibinin and clinical trials that are currently ongoing, at a single platform.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | | | - Sushil Kumar Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | - Raj Savla
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, TR48000, Turkey
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| |
Collapse
|
11
|
Chemical Profile, Antioxidant, Anti-Inflammatory, and Anti-Cancer Effects of Italian Salvia rosmarinus Spenn. Methanol Leaves Extracts. Antioxidants (Basel) 2020; 9:antiox9090826. [PMID: 32899385 PMCID: PMC7556042 DOI: 10.3390/antiox9090826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we evaluated and compared the chemical composition, the antioxidant, anti-inflammatory, and anti-proliferative effects of four methanol extracts (R1–R4), of Salvia rosmarinus Spenn. in two different sites of Southern Italy obtained by maceration or ultrasound-assisted extraction. Extracts of S. rosmarinus collected on the Ionian coast are indicated with the abbreviations R1 (maceration) and R2 (ultrasound-assisted extraction). Extracts of S. rosmarinus collected on the Tyrrhenian coast are indicated with the abbreviations R3 (maceration) and R4 (ultrasound-assisted extraction). The chemical composition was analyzed using High Pressure liquid chromatography–Diod-Array detection–Electrospray ionization–Quadrupole–Mass Spectroscopy (HPLC-DAD-ESI-Q-MS). The antioxidant activity was analyzed by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene bleaching, and Ferric Reducing Antioxidant Power (FRAP) assays. Antioxidant features were also assessed in lipopolysaccharide (LPS)-stimulated RAW-264.7 murine macrophages, evaluating Reactive Oxygen Species (ROS) production; in the same experimental model, the anti-inflammatory activity of the extracts was investigated. Interestingly, all extracts displayed antioxidant and anti-inflammatory properties. They exhibited significative nitrite production inhibitory activity, whith IC50 values ranging from 3.46 to 5.53 µg/mL, without impairing cell viability. The anti-inflammatory activity was also investigated by Western Blotting and immunofluorescence assay, highlighting the R3 and R4 extracts ability to reduce NF-κB translocation, as well as to disrupt the MAPKs signaling pathway. Extracts exhibited both potential anti-proliferative activity on breast cancer cells, inducing apoptosis, without affecting non-tumorigenic cells, and the ability to inhibit MDA-MB-231 cells’ motility. Finally, the rosemary extracts treatment significantly reduced the power of conditioned media, from MCF-7 or MDA-MB-231 cells to induce nitrite production on RAW 264.7 cells, confirming their promising anti-inflammatory activity.
Collapse
|
12
|
Elshafae SM, Dirksen WP, Alasonyalilar-Demirer A, Breitbach J, Yuan S, Kantake N, Supsavhad W, Hassan BB, Attia Z, Rosol TJ. Canine prostatic cancer cell line (LuMa) with osteoblastic bone metastasis. Prostate 2020; 80:698-714. [PMID: 32348616 PMCID: PMC7291846 DOI: 10.1002/pros.23983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Osteoblastic bone metastasis represents the most common complication in men with prostate cancer (PCa). During progression and bone metastasis, PCa cells acquire properties similar to bone cells in a phenomenon called osteomimicry, which promotes their ability to metastasize, proliferate, and survive in the bone microenvironment. The mechanism of osteomimicry resulting in osteoblastic bone metastasis is unclear. METHODS We developed and characterized a novel canine prostatic cancer cell line (LuMa) that will be useful to investigate the relationship between osteoblastic bone metastasis and osteomimicry in PCa. The LuMa cell line was established from a primary prostate carcinoma of a 13-year old mixed breed castrated male dog. Cell proliferation and gene expression of LuMa were measured and compared to three other canine prostatic cancer cell lines (Probasco, Ace-1, and Leo) in vitro. The effect of LuMa cells on calvaria and murine preosteoblastic (MC3T3-E1) cells was measured by quantitative reverse-transcription polymerase chain reaction and alkaline phosphatase assay. LuMa cells were transduced with luciferase for monitoring in vivo tumor growth and metastasis using different inoculation routes (subcutaneous, intratibial [IT], and intracardiac [IC]). Xenograft tumors and metastases were evaluated using radiography and histopathology. RESULTS After left ventricular injection, LuMa cells metastasized to bone, brain, and adrenal glands. IT injections induced tumors with intramedullary new bone formation. LuMa cells had the highest messenger RNA levels of osteomimicry genes (RUNX2, RANKL, and Osteopontin [OPN]), CD44, E-cadherin, and MYOF compared to Ace-1, Probasco, and Leo cells. LuMa cells induced growth in calvaria defects and modulated gene expression in MC3T3-E1 cells. CONCLUSIONS LuMa is a novel canine PCa cell line with osteomimicry and stemness properties. LuMa cells induced osteoblastic bone formation in vitro and in vivo. LuMa PCa cells will serve as an excellent model for studying the mechanisms of osteomimicry and osteoblastic bone and brain metastasis in prostate cancer.
Collapse
Affiliation(s)
- Said M. Elshafae
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Pathology, Faculty of Veterinary medicine, Benha University, Benha, Egypt
- Dept. of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Wessel P. Dirksen
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Aylin Alasonyalilar-Demirer
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, Turkey
| | - Justin Breitbach
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Shiyu Yuan
- Dept. of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Noriko Kantake
- Dept. of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Wachiraphan Supsavhad
- Dept. of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Bardes B. Hassan
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Zayed Attia
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Sadat City University, Sadat City, Egypt
| | - Thomas J. Rosol
- Dept. of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Correspondence to: Dr. Thomas Rosol, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 225 Irvine Hall, Athens, OH 45701, USA. , Phone: 740.593.2405
| |
Collapse
|
13
|
Eerola SK, Santio NM, Rinne S, Kouvonen P, Corthals GL, Scaravilli M, Scala G, Serra A, Greco D, Ruusuvuori P, Latonen L, Rainio EM, Visakorpi T, Koskinen PJ. Phosphorylation of NFATC1 at PIM1 target sites is essential for its ability to promote prostate cancer cell migration and invasion. Cell Commun Signal 2019; 17:148. [PMID: 31730483 PMCID: PMC6858710 DOI: 10.1186/s12964-019-0463-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation increases NFATC1 activity without affecting its subcellular localization. Both PIM kinases and NFATC1 have been reported to promote cancer cell migration, invasion and angiogenesis, but it has remained unclear whether the effects of NFATC1 are phosphorylation-dependent and which downstream targets are involved. Methods We used mass spectrometry to identify PIM1 phosphorylation target sites in NFATC1, and analysed their functional roles in three prostate cancer cell lines by comparing phosphodeficient mutants to wild-type NFATC1. We used luciferase assays to determine effects of phosphorylation on NFAT-dependent transcriptional activity, and migration and invasion assays to evaluate effects on cell motility. We also performed a microarray analysis to identify novel PIM1/NFATC1 targets, and validated one of them with both cellular expression analyses and in silico in clinical prostate cancer data sets. Results Here we have identified ten PIM1 target sites in NFATC1 and found that prevention of their phosphorylation significantly decreases the transcriptional activity as well as the pro-migratory and pro-invasive effects of NFATC1 in prostate cancer cells. We observed that also PIM2 and PIM3 can phosphorylate NFATC1, and identified several novel putative PIM1/NFATC1 target genes. These include the ITGA5 integrin, which is differentially expressed in the presence of wild-type versus phosphorylation-deficient NFATC1, and which is coexpressed with PIM1 and NFATC1 in clinical prostate cancer specimens. Conclusions Based on our data, phosphorylation of PIM1 target sites stimulates NFATC1 activity and enhances its ability to promote prostate cancer cell migration and invasion. Therefore, inhibition of the interplay between PIM kinases and NFATC1 may have therapeutic implications for patients with metastatic forms of cancer. Graphical abstract ![]()
Collapse
Affiliation(s)
- Sini K Eerola
- Department of Biology, University of Turku, Vesilinnantie 5, FI-20500, Turku, Finland.,Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Niina M Santio
- Department of Biology, University of Turku, Vesilinnantie 5, FI-20500, Turku, Finland
| | - Sanni Rinne
- Department of Biology, University of Turku, Vesilinnantie 5, FI-20500, Turku, Finland
| | - Petri Kouvonen
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Garry L Corthals
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Mauro Scaravilli
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Giovanni Scala
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,University of Helsinki, Helsinki, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,University of Helsinki, Helsinki, Finland
| | - Pekka Ruusuvuori
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Signal processing laboratory, Tampere University of Technology, Pori, Finland
| | - Leena Latonen
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Eeva-Marja Rainio
- Department of Biology, University of Turku, Vesilinnantie 5, FI-20500, Turku, Finland
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Päivi J Koskinen
- Department of Biology, University of Turku, Vesilinnantie 5, FI-20500, Turku, Finland.
| |
Collapse
|
14
|
Tao ZS, Wu XJ, Yang M, Xu HG. Local administration with silymarin could increase osseointegration of hydroxyapatite-coated titanium implants in ovariectomized rats. J Biomater Appl 2019; 34:664-672. [PMID: 31342833 DOI: 10.1177/0885328219863290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhou-Shan Tao
- 1 Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Xing-Jing Wu
- 1 Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Min Yang
- 1 Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Hong-Guang Xu
- 2 Department of Spine Surgery, Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan hospital of Wannan Medical College. Anhui, People's Republic of China
| |
Collapse
|
15
|
Schramm HM. The Epithelial-Myeloid-Transition (EMyeT) of cancer cells as a wrongly perceived primary inflammatory process eventually progressing to a bone remodeling malignancy: the alternative pathway for Epithelial- Mesenchymal-Transition hypothesis (EMT)? J Cancer 2019; 10:3798-3809. [PMID: 31333797 PMCID: PMC6636288 DOI: 10.7150/jca.31364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer cells express multiple markers expressed by mesenchymal as well as myeloid cells in common and in addition specific markers of the myeloid lineages, especially those of dendritic cells, macrophages and preosteoclasts. It has also been possible to identify monocyte-macrophage gene clusters in cancer cell specimens as well as in cancer cell lines. Accordingly, like myeloid cells cancer cells often express pro-inflammatory cytokines, and consequently the carcinoma may be perceived by the organism as a primary inflammatory process comparable to the immune inflammatory reactions in the eye or in the case of arthritis. This would explain why a carcinoma may induce a certain alarm state in the organism by increasing a fatal sympathetic tone in the patient, supplying the carcinomas with nutrients at the cost of other requirements, inducing tolerance against the cancer cells mistaken as myeloid cells, provoking fibrosis and neoangiogenesis, and increasing inflammatory cells at the carcinoma site. This seemingly inflammatory process of Epithelial-Myeloid-Transition (EMyeT) is superimposed by the progression of part of the myeloid cancer cells to stages comparable to preosteoclasts and osteoclasts, and their development to metastasizing carcinomas often at the site of bone. This concept of carcinogenesis and malignant progression described here challenges the widely accepted EMT-hypotheses and could deliver the rationale for the various peculiar aspects of cancer and the variety of therapeutic antitumoral measures.
Collapse
Affiliation(s)
- Henning M Schramm
- Institute for Integral Cancer Research (IFIK), CH-4144 Arlesheim/Switzerland
| |
Collapse
|
16
|
Fernandes CJDC, Veiga MR, Peracoli MTS, Zambuzzi WF. Modulatory effects of silibinin in cell behavior during osteogenic phenotype. J Cell Biochem 2019; 120:13413-13425. [DOI: 10.1002/jcb.28616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Célio Jr. da Costa Fernandes
- Department of Chemistry and Biochemistry, Laboratory of Bioassays and Cell Dynamics, Institute of Biosciences Sao Paulo State University ‐ UNESP Botucatu São Paulo Brazil
| | - Mariana R. Veiga
- Department of Microbiology and Immunology, Institute of Biosciences Sao Paulo State University ‐ UNESP Botucatu São Paulo Brazil
| | - Maria Terezinha Serrão Peracoli
- Department of Microbiology and Immunology, Institute of Biosciences Sao Paulo State University ‐ UNESP Botucatu São Paulo Brazil
| | - Willian F. Zambuzzi
- Department of Chemistry and Biochemistry, Laboratory of Bioassays and Cell Dynamics, Institute of Biosciences Sao Paulo State University ‐ UNESP Botucatu São Paulo Brazil
| |
Collapse
|
17
|
Pang M, Rodríguez-Gonzalez M, Hernandez M, Recinos CC, Seldeen KL, Troen BR. AP-1 and Mitf interact with NFATc1 to stimulate cathepsin K promoter activity in osteoclast precursors. J Cell Biochem 2019; 120:12382-12392. [PMID: 30816596 DOI: 10.1002/jcb.28504] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 11/08/2022]
Abstract
Cathepsin K (CTSK) is a secreted protease that plays an essential role in osteoclastic bone resorption and osteoporotic bone loss. We have previously shown that activator protein 1 (AP-1) stimulates CTSK promoter activity and that proximal nuclear factor of activated T cells cytoplasmic 1 (NFATc1)-binding sites play a major role in the stimulation of CTSK gene expression by receptor activator of NFκB ligand (RANKL). In the present study, we have extended these observations and further dissected the effects of transcription factors involved in the regulation of CTSK gene expression. Our aim was to investigate the cooperative interplay among transcription factors AP-1, microphthalmia-associated transcription factor (Mitf), and NFATc1, and the consequent regulatory effects on CTSK transcription. Experiments were carried out in RAW 264.7 cells, which can be readily differentiated to osteoclasts upon RANKL stimulation. Our data show that AP-1, Mitf, and NFATc1 are capable of independently stimulating CTSK promoter activity. A combination of any two factors further enhances CTSK promoter activity, with the combination of AP-1 (c-fos/c-jun) and NFATc1 inducing the largest increase. We further identify a synergistic effect when all three factors cooperate intimately at the proximal promoter region, yielding maximal transcriptional upregulation of the CTSK promoter. RANKL induces temporal localization of AP-1 and NFATc1 to the CTSK promoter. These results suggest that the interaction of multiple transcription factors mediate a maximal response to RANKL-induced CTSK gene expression.
Collapse
Affiliation(s)
- Manhui Pang
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System Research Service, Buffalo, New York
| | - Maria Rodríguez-Gonzalez
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System Research Service, Buffalo, New York
| | - Mireya Hernandez
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System Research Service, Buffalo, New York
| | - Claudia Carolina Recinos
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System Research Service, Buffalo, New York
| | - Kenneth Ladd Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System Research Service, Buffalo, New York
| | - Bruce Robert Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System Research Service, Buffalo, New York
| |
Collapse
|
18
|
Pandey MK, Gupta SC, Karelia D, Gilhooley PJ, Shakibaei M, Aggarwal BB. Dietary nutraceuticals as backbone for bone health. Biotechnol Adv 2018; 36:1633-1648. [DOI: 10.1016/j.biotechadv.2018.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
|
19
|
Ham J, Kim J, Bazer FW, Lim W, Song G. Silibinin‐induced endoplasmic reticulum stress and mitochondrial dysfunction suppress growth of endometriotic lesions. J Cell Physiol 2018; 234:4327-4341. [DOI: 10.1002/jcp.27212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Jiyeon Ham
- Department of Biotechnology Institute of Animal Molecular Biotechnology Korea University Seoul Republic of Korea
| | - Jonggun Kim
- Department of Biotechnology Institute of Animal Molecular Biotechnology Korea University Seoul Republic of Korea
| | - Fuller W. Bazer
- Department of Animal Science Center for Animal Biotechnology and Genomics, Texas A&M University College Station Texas
| | - Whasun Lim
- Department of Biomedical Sciences Catholic Kwandong University Gangneung Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology Institute of Animal Molecular Biotechnology Korea University Seoul Republic of Korea
| |
Collapse
|
20
|
Calcium and Nuclear Signaling in Prostate Cancer. Int J Mol Sci 2018; 19:ijms19041237. [PMID: 29671777 PMCID: PMC5979488 DOI: 10.3390/ijms19041237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR) and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the unifying themes that hold out promise in the context of the problems presented by prostate cancer. Genomic perturbations, kinase cascades, developmental pathways, and channels and transporters are covered, with an emphasis on nuclear transport and functions. Special attention is paid to the molecular mechanisms behind prostate cancer progression to the malignant forms and the unfavorable response to anti-androgen treatment. The survey leads to some new hypotheses that connect heretofore disparate results and may present a translational interest.
Collapse
|
21
|
Silibinin alleviates inflammation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes and has a therapeutic effect on arthritis in rats. Sci Rep 2018; 8:3241. [PMID: 29459717 PMCID: PMC5818498 DOI: 10.1038/s41598-018-21674-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/08/2018] [Indexed: 01/29/2023] Open
Abstract
Silibinin, a natural polyphenolic flavonoid, possesses anti-oxidant, anti-inflammation and anti-cancer properties. The present study was designed to investigate the effects of silibinin on rheumatoid arthritis (RA) pathogenesis-related cells and collagen-induced arthritis (CIA) and further explore the potential underlying mechanisms. Our results showed that silibinin suppressed cell viability and increased the percentage of apoptotic RA-fibroblast-like synoviocytes (FLS). Furthermore, the production of inflammatory cytokines in RA-FLS and a CIA rat model was effectively inhibited by silibinin. Silibinin also induced macrophage M2 polarization in RAW264.7 cells. We further demonstrated that silibinin inhibits Th17 cell differentiation in vitro. The nuclear factor kappa B (NF-κB) pathway was suppressed in RA-FLS. In addition, Sirtuin1 (SIRT1) was decreased after silibinin treatment, and RA-FLS transfection with a short hairpin RNA (shRNA) of SIRT1 enhanced silibinin-induced apoptosis. Autophagy was markedly decreased in a dose-dependent manner following silibinin treatment. These findings indicate that silibinin inhibited inflammation by inhibiting the NF-κB pathway, and SIRT1 may participate in silibinin-induced apoptosis. Silibinin also inhibited autophagy in RA-FLS. Thus, silibinin may be a potential therapeutic agent for the treatment of RA.
Collapse
|
22
|
Jia Y, Miao Y, Yue M, Shu M, Wei Z, Dai Y. Tetrandrine attenuates the bone erosion in collagen-induced arthritis rats by inhibiting osteoclastogenesis via spleen tyrosine kinase. FASEB J 2018; 32:3398-3410. [PMID: 29401630 DOI: 10.1096/fj.201701148rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tetrandrine, a bisbenzylisoquinoline alkaloid, was previously demonstrated to attenuate inflammation and cartilage destruction in the ankles of mice with collagen-induced arthritis (CIA). Here, we explored the underlying mechanism by which tetrandrine prevented arthritis-induced bone erosion by focusing on the differentiation and function of osteoclasts. We found that daily administration of tetrandrine (30 mg/kg) markedly reduced the bone damage and decreased the number of osteoclasts in CIA rats. In vitro, tetrandrine inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis at the early stage and reduced the expressions of osteoclast-related marker genes. In bone marrow-derived macrophages and RAW264.7 cells, tetrandrine inhibited RANKL-induced translocation of NF-κB-p65 and nuclear factor of activated T cell 1 (NFATc1) through suppressing spleen tyrosine kinase (Syk)-Bruton's tyrosine kinase-PLCγ2-Ca2+ signaling. Of interest, tetrandrine did not affect the phosphorylation of immunoreceptor tyrosine-based activation motifs, the conventional upstream of Syk, but it inhibited the activity of Syk by enhancing its ubiquitination and degradation. The anti-osteoclastogenesis effect of tetrandrine nearly disappeared when it was used in combination with the Syk inhibitor piceatannol or in constitutively activated Syk-overexpressing cells. Taken together, tetrandrine attenuated CIA-induced bone destruction by inhibiting osteoclastogenesis through hindering the translocation of NF-κB-p65 and NFATc1 via reducing the activation of Syk.-Jia, Y., Miao, Y., Yue, M., Shu, M., Wei, Z., Dai, Y. Tetrandrine attenuates the bone erosion in collagen-induced arthritis rats by inhibiting osteoclastogenesis via spleen tyrosine kinase.
Collapse
Affiliation(s)
- Yugai Jia
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Yumeng Miao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Mengfan Yue
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Mei Shu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
23
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|
24
|
Leena RS, Vairamani M, Selvamurugan N. Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro. Colloids Surf B Biointerfaces 2017; 158:308-318. [PMID: 28711017 DOI: 10.1016/j.colsurfb.2017.06.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 01/15/2023]
Abstract
Silibinin is a plant derived flavonolignan known for its multiple biological properties, but its role in the promotion of bone formation has not yet been well studied. Moreover, the delivery of Silibinin is hindered by its complex hydrophobic nature, which limits its bioavailability. Hence, in this study, we fabricated a drug delivery system using chitosan nanoparticles loaded with Silibinin at different concentrations (20μM, 50μM, and 100μM). They were then incorporated into scaffolds containing Alginate and Gelatin (Alg/Gel) for the sustained and prolonged release of Silibinin. The Silibinin-loaded chitosan nanoparticles (SCN) were prepared using the ionic gelation technique, and the scaffolds (Alg/Gel-SCN) were synthesized by the conventional method of freeze drying. The scaffolds were subjected to physicochemical and material characterization studies. The addition of SCN did not affect the porosity of the scaffolds, yet increased the protein adsorption, degradation rates, and bio-mineralization. These scaffolds were biocompatible with mouse mesenchymal stem cells. The scaffolds loaded with 50μM Silibinin promoted osteoblast differentiation, which was determined at cellular and molecular levels. Recent studies indicated the role of microRNAs (miRNAs) in osteogenesis and we found that the Silibinin released from scaffolds regulated miRNAs that control the bone morphogenetic protein pathway. Hence, our results suggest the potential for sustained and prolonged release of Silibinin to promote bone formation and, thus, these Alg/Gel-SCN scaffolds may be candidates for bone tissue engineering applications.
Collapse
Affiliation(s)
- R S Leena
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - M Vairamani
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
25
|
Wang T, Cai L, Wang Y, Wang Q, Lu D, Chen H, Ying X. The protective effects of silibinin in the treatment of streptozotocin-induced diabetic osteoporosis in rats. Biomed Pharmacother 2017; 89:681-688. [DOI: 10.1016/j.biopha.2017.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 11/27/2022] Open
|
26
|
Leach DA, Panagopoulos V, Nash C, Bevan C, Thomson AA, Selth LA, Buchanan G. Cell-lineage specificity and role of AP-1 in the prostate fibroblast androgen receptor cistrome. Mol Cell Endocrinol 2017; 439:261-272. [PMID: 27634452 DOI: 10.1016/j.mce.2016.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
Androgen receptor (AR) signalling in fibroblasts is important in prostate development and carcinogenesis, and is inversely related to prostate cancer mortality. However, the molecular mechanisms of AR action in fibroblasts and other non-epithelial cell types are largely unknown. The genome-wide DNA binding profile of AR in human prostate fibroblasts was identified by chromatin immunoprecipitation sequencing (ChIP-Seq), and found to be common to other fibroblast lines but disparate from AR cistromes of prostate cancer cells and tissue. Although AR binding sites specific to fibroblasts were less well conserved evolutionarily than those shared with cancer epithelia, they were likewise correlated with androgen regulation of fibroblast gene expression. Whereas FOXA1 is the key pioneer factor of AR in cancer epithelia, our data indicated that AP-1 likely plays a more important role in the AR cistrome in fibroblasts. The specificity of AP-1 and FOXA1 to binding in these cells is demonstrated using immunoblot and immunohistochemistry. Importantly, we find the fibroblast cistrome is represented in whole tissue/in vivo ChIP-seq studies at both genomic and resulting protein levels, highlighting the importance of the stroma in whole tissue -omic studies. This is the first nuclear receptor ChIP-seq study in prostatic fibroblasts, and provides novel insight into the action of fibroblast AR in prostate cancer.
Collapse
Affiliation(s)
- Damien A Leach
- The Basil Hetzel Institute for Translational Health Research, The University of Adelaide, SA, Australia; Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Vasilios Panagopoulos
- The Basil Hetzel Institute for Translational Health Research, The University of Adelaide, SA, Australia
| | - Claire Nash
- Division of Urology, Department of Surgery, McGill University Health Centre, Montreal, Canada
| | - Charlotte Bevan
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Axel A Thomson
- Division of Urology, Department of Surgery, McGill University Health Centre, Montreal, Canada
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, Adelaide, SA, Australia; Freemasons Foundation Centre for Mens' Health, School of Medicine, The University of Adelaide, Adelaide, SA, Australia.
| | - Grant Buchanan
- The Basil Hetzel Institute for Translational Health Research, The University of Adelaide, SA, Australia.
| |
Collapse
|
27
|
Zhu XX, Ding YH, Wu Y, Qian LY, Zou H, He Q. Silibinin: a potential old drug for cancer therapy. Expert Rev Clin Pharmacol 2016; 9:1323-1330. [PMID: 27362364 DOI: 10.1080/17512433.2016.1208563] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Silibinin is mixture of flavonolignans extracted from milk thistle and often has been used in the treatment of acute and chronic liver disorders caused by toxins, drug, alcohol and hepatitis and gall bladder disorders for its antioxidant and hepatoprotective properties. Areas covered: However, increasing evidence suggest that silibinin is not solely limited in the treatment of these diseases. Further research suggests that silymarin may function diversely and may serve as a novel therapy for cancer therapy, such as lung cancer, prostatic cancer, colon cancer, breast cancer, bladder cancer and hepatocellular carcinoma by regulating cancer cells growth, proliferation, apoptosis, angiogenesis and many other mechanism. Expert commentary: In this review, in order to provide potential new treatment for these cancer, we summarize the recent anti-cancer findings of silibinin in these cancer and clarify the mechanisms of this effect.
Collapse
Affiliation(s)
- Xing-Xing Zhu
- a Department of Nephrology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Ya-Hui Ding
- b Department of Cardiology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Yi Wu
- c Department of Hematology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Lin-Yan Qian
- b Department of Cardiology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Hai Zou
- b Department of Cardiology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Qiang He
- a Department of Nephrology , Zhejiang Provincial People's Hospital , Hangzhou , China
| |
Collapse
|
28
|
Li L, Duan Z, Yu J, Dang HX. NFATc1 regulates cell proliferation, migration, and invasion of ovarian cancer SKOV3 cells in vitro and in vivo. Oncol Rep 2016; 36:918-28. [PMID: 27350254 DOI: 10.3892/or.2016.4904] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/20/2016] [Indexed: 11/06/2022] Open
Abstract
NFATc1 (nuclear factor of activated T‑cells c1) is associated with malignancy in several cancer models. However, the expression and function of NFATc1 in ovarian cancer remain elusive. In the present study, we investigated the role of NFATc1 in human epithelial ovarian cancer (EOC) using human ovarian adenocarcinoma SKOV3 cells and patient characteristics. NFATc1 expression was silenced by siRNA in the SKOV3 ovarian cancer cell line and in human ovarian cancer nude mouse xenografts. Real‑time PCR, western blotting, immunohistochemical staining, MTT, flow cytometry, transwell, erasion trace and mouse assays were used to detect NFATc1 expression, cell proliferation, apoptosis, cell invasion and migration, tumor growth and angiogenesis. Survival analysis was performed to assess the correlation between NFATc1 expression and survival. NFATc1 was overexpressed in the SKOV3 ovarian cancer cell line and in human serous/mucinous ovarian cancer tissues. The silencing of NFATc1 expression by siRNA reduced cell proliferation and migration and promoted apoptosis in vitro and decreased the ovarian cancer cell tumorigenesis in vivo in nude mice. NFATc1 overexpression in high‑grade serous ovarian carcinomas was an independent prognostic factor of poor overall survival and of early relapse (P<0.01) in a univariate analysis. Our present data provide evidence that NFATc1 is overexpressed in human serous/mucinous ovarian cancer and is associated with a poor prognosis. NFATc1 silencing regulates the cell cycle, apoptosis, invasion and migration. NFATc1 thus has the potential to be a therapeutic target and to be used in EOC diagnosis and prognosis.
Collapse
Affiliation(s)
- Long Li
- Department of Physical Examination, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhaoning Duan
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jihui Yu
- Department of Physical Examination, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong-Xing Dang
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400016, P.R. China
| |
Collapse
|
29
|
Jiang G, Wu AD, Huang C, Gu J, Zhang L, Huang H, Liao X, Li J, Zhang D, Zeng X, Jin H, Huang H, Huang C. Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis. Cancer Prev Res (Phila) 2016; 9:567-80. [PMID: 27080594 DOI: 10.1158/1940-6207.capr-15-0338] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/29/2016] [Indexed: 11/16/2022]
Abstract
Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR.
Collapse
Affiliation(s)
- Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Amy D Wu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Chao Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Jiayan Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liping Zhang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Liao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.
| |
Collapse
|
30
|
Ting H, Deep G, Kumar S, Jain AK, Agarwal C, Agarwal R. Beneficial effects of the naturally occurring flavonoid silibinin on the prostate cancer microenvironment: role of monocyte chemotactic protein-1 and immune cell recruitment. Carcinogenesis 2016; 37:589-599. [PMID: 27207648 DOI: 10.1093/carcin/bgw039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/29/2016] [Indexed: 01/09/2023] Open
Abstract
Tumor microenvironment plays an essential role in prostate carcinogenesis and offers novel opportunities to prevent and treat prostate cancer (PCA). Here, we investigated the ability of cancer-associated fibroblasts (CAFs) to promote PCA progression, and silibinin efficacy to target this response. We collected conditioned media from CAFs treated with vehicle or silibinin, and labeled as control conditioned media (CCM) or silibinin-treatment conditioned media (SBCM), respectively. Next, we characterized the effect of CCM and SBCM treatment in several PCA cell lines (RWPE-1, WPE-1 NA-22, WPE-1 NB-14 and PC3). Result showed that compared with SBCM, CCM significantly reduces E-cadherin expression and increases invasiveness and clonogenicity in PCA cells. Further molecular studies identified monocyte chemotactic protein-1 (MCP-1) as the key component of CCM that promotes PCA invasiveness, whereas silibinin treatment strongly reduced MCP-1 expression in CAFs by inhibiting the DNA-binding activity of MCP-1 transcriptional regulators-nuclear factor-kappaB and AP-1. In vivo, silibinin feeding (200mg/kg body weight) strongly reduced TRAMPC1 allografts growth (by 68%) in syngeneic C57Bl/6 mice. TRAMPC1 tumor analysis showed that silibinin reduced MCP-1 and CAFs' biomarkers (fibroblast activation protein, α-smooth muscle actin, transforming growth factor beta 2, vimentin etc.) and significantly modulated the recruitment of immune cells in the tumor microenvironment. Similar inhibitory effects of silibinin on MCP-1 and immune cells recruitment were also observed in TRAMP PCA tissues with reported silibinin efficacy. Overall, our data suggest that silibinin can target CAF-mediated invasiveness in PCA by inhibiting MCP-1 secretion. This, in turn, was associated with a reduction in immune cell recruitment in vivo along with a marked reduction in tumor growth.
Collapse
Affiliation(s)
- Harold Ting
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences and
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences and.,University of Colorado Cancer Center, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd, V20-2118, Box C238, Aurora, CO 80045, USA
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences and
| | - Anil K Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences and
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences and.,University of Colorado Cancer Center, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd, V20-2118, Box C238, Aurora, CO 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences and.,University of Colorado Cancer Center, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd, V20-2118, Box C238, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Nakabayashi H, Aoyama S, Kawahara M, Nagamune T. Differentiation signalobody: Demonstration of antigen-dependent osteoclast differentiation from a progenitor cell line. J Biosci Bioeng 2016; 122:357-63. [PMID: 26979343 DOI: 10.1016/j.jbiosc.2016.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/13/2016] [Accepted: 02/19/2016] [Indexed: 01/10/2023]
Abstract
A "cytokine-less" in vitro differentiation method would be promising for cost-effective mass production of cells used for regenerative medicine. In this study, we developed a differentiation signalobody S-RANK, in which the extracellular domain of receptor activator of nuclear factor kappa-B (RANK) is replaced with a single-chain variable fragment (scFv) to attain signaling in response to an inexpensive antigen. A murine macrophage cell line RAW264, which is known to differentiate into an osteoclast by RANK ligand (RANKL), was lentivirally transduced with S-RANK. When the resultant cells were cultured with a specific antigen, the cells differentiated into multinucleated tartrate-resistant acid phosphatase-positive osteoclasts. The differentiation efficiency was almost comparable to those induced by RANKL. In addition, the signaling analysis demonstrated that nuclear factor kappa-B and mitogen-activated protein kinase signaling pathways, which are the major signaling pathways downstream of wild-type RANK, were also activated by S-RANK. These results demonstrate that S-RANK sufficiently mimics signal transduction of wild-type RANK. Differentiation signalobodies may be applied for controlling differentiation of other cell types by using appropriate signaling domains.
Collapse
Affiliation(s)
- Hideto Nakabayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Saeko Aoyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
32
|
Potential Effects of Silymarin and Its Flavonolignan Components in Patients with β-Thalassemia Major: A Comprehensive Review in 2015. Adv Pharmacol Sci 2016; 2016:3046373. [PMID: 26997953 PMCID: PMC4779508 DOI: 10.1155/2016/3046373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 02/08/2023] Open
Abstract
Major β-thalassemia (β-TM) is one of the most common inherited hemolytic types of anemia which is caused as a result of absent or reduced synthesis of β-globin chains of hemoglobin. This defect results in red blood cells lysis and chronic anemia that can be treated by multiple blood transfusions and iron chelation therapy. Without iron chelation therapy, iron overload will cause lots of complications in patients. Antioxidant components play an important role in the treatment of the disease. Silymarin is an antioxidant flavonoid isolated from Silybum marianum plant. In the present study, we reviewed clinical and experimental studies investigating the use of silymarin prior to September 1, 2015, using PubMed, ISI Web of Knowledge, Science Direct, Scopus, Ovid, and Cochrane Library databases and we evaluated the potential effects of silymarin on controlling the complications induced by iron overload in patients with β-TM. Based on the results of the present study, we can conclude that silymarin may be useful as an adjuvant for improving multiple organ dysfunctions.
Collapse
|
33
|
Fazio E, Scala A, Grimato S, Ridolfo A, Grassi G, Neri F. Laser light triggered smart release of silibinin from a PEGylated-PLGA gold nanocomposite. J Mater Chem B 2015; 3:9023-9032. [PMID: 32263033 DOI: 10.1039/c5tb01076d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work a new remotely-triggered drug delivery system based on PEG-PLGA_Au nanocomposite is proposed. Due to the optical properties of gold nanoparticles (Au NPs), the nanovector allows on-demand control of the dose, the timing and the duration of the drug release, upon irradiation with red laser light. The Au NPs are synthesized by laser ablation and subsequently embedded into the PEG-PLGA copolymer via a modified emulsion-diffusion method, devised in such a way that both Au NPs and silibinin (SLB), a flavonolignan with promising anti-neoplastic effects, can be co-loaded into the polymeric system in a single step procedure. A combination of analytical techniques including nuclear magnetic resonance (NMR), static and dynamic light scattering (SLS, DLS), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), infrared (FTIR) spectroscopy and scanning/transmission electron microscopies (SEM/STEM/TEM), have been used to study the structural and morphological properties of the nanocomposite. The loading efficiency and the drug content, evaluated by UV-vis absorption optical spectroscopy, are 89% and 8.8%, respectively. Upon laser irradiation the system releases the encapsulated drug with a higher efficiency (∼10%) than that without irradiation. This behaviour indicates that our nanoplatform is responsive to light and it could be considered a promising new type of light-activated drug delivery carrier applicable to the biomedical field.
Collapse
Affiliation(s)
- E Fazio
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, V.le F. Stagno d'Alcontres 31, 98166, Messina, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Manda KR, Tripathi P, Hsi AC, Ning J, Ruzinova MB, Liapis H, Bailey M, Zhang H, Maher CA, Humphrey PA, Andriole GL, Ding L, You Z, Chen F. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene 2015; 35:3282-92. [PMID: 26477312 PMCID: PMC5012433 DOI: 10.1038/onc.2015.389] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Despite recent insights into prostate cancer (PCa)-associated genetic changes, full understanding of prostate tumorigenesis remains elusive due to complexity of interactions among various cell types and soluble factors present in prostate tissue. We found upregulation of Nuclear Factor of Activated T Cells c1 (NFATc1) in human PCa and cultured PCa cells, but not in normal prostates and non-tumorigenic prostate cells. To understand the role of NFATc1 in prostate tumorigenesis in situ, we temporally and spatially controlled the activation of NFATc1 in mouse prostate and showed that such activation resulted in prostatic adenocarcinoma with features similar to those seen in human PCa. Our results indicate that the activation of a single transcription factor, NFATc1 in prostatic luminal epithelium to PCa can affect expression of diverse factors in both cells harboring the genetic changes and in neighboring cells through microenvironmental alterations. In addition to the activation of oncogenes c-MYC and STAT3 in tumor cells, a number of cytokines and growth factors, such as IL1β, IL6, and SPP1 (Osteopontin, a key biomarker for PCa), were upregulated in NFATc1-induced PCa, establishing a tumorigenic microenvironment involving both NFATc1 positive and negative cells for prostate tumorigenesis. To further characterize interactions between genes involved in prostate tumorigenesis, we generated mice with both NFATc1 activation and Pten inactivation in prostate. We showed that NFATc1 activation led to acceleration of Pten-null–driven prostate tumorigenesis by overcoming the PTEN loss–induced cellular senescence through inhibition of p21 activation. This study provides direct in vivo evidence of an oncogenic role of NFATc1 in prostate tumorigenesis and reveals multiple functions of NFATc1 in activating oncogenes, in inducing proinflammatory cytokines, in oncogene addiction, and in overcoming cellular senescence, which suggests calcineurin-NFAT signaling as a potential target in preventing PCa.
Collapse
Affiliation(s)
- K R Manda
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA
| | - P Tripathi
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - A C Hsi
- The Genome Institute, Washington University, St Louis, MO, USA
| | - J Ning
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,The Genome Institute, Washington University, St Louis, MO, USA
| | - M B Ruzinova
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - H Liapis
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - M Bailey
- The Genome Institute, Washington University, St Louis, MO, USA
| | - H Zhang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - C A Maher
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,The Genome Institute, Washington University, St Louis, MO, USA.,Siteman Cancer Center, Washington University, St Louis, MO, USA
| | - P A Humphrey
- Department of Pathology, Yale University, New Haven, CT, USA
| | - G L Andriole
- Siteman Cancer Center, Washington University, St Louis, MO, USA.,Department of Surgery, Washington University, St Louis, MO, USA
| | - L Ding
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,The Genome Institute, Washington University, St Louis, MO, USA.,Siteman Cancer Center, Washington University, St Louis, MO, USA
| | - Z You
- Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA
| | - F Chen
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,Siteman Cancer Center, Washington University, St Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| |
Collapse
|
35
|
Ying X, Chen X, Liu H, Nie P, Shui X, Shen Y, Yu K, Cheng S. Silibinin alleviates high glucose-suppressed osteogenic differentiation of human bone marrow stromal cells via antioxidant effect and PI3K/Akt signaling. Eur J Pharmacol 2015; 765:394-401. [DOI: 10.1016/j.ejphar.2015.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022]
|
36
|
Tilley C, Deep G, Agarwal R. Chemopreventive opportunities to control basal cell carcinoma: Current perspectives. Mol Carcinog 2015; 54:688-97. [PMID: 26053157 DOI: 10.1002/mc.22348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/09/2015] [Accepted: 05/15/2015] [Indexed: 11/10/2022]
Abstract
Basal cell carcinoma (BCC) is a major health problem with approximately 2.8 million new cases diagnosed each year in the United States. BCC incidences have continued to rise due to lack of effective chemopreventive options. One of the key molecular characteristics of BCC is the sustained activation of hedgehog signaling through inactivating mutations in the tumor suppressor gene patch (Ptch) or activating mutations in Smoothened. In the past, several studies have addressed targeting the activated hedgehog pathway for the treatment and prevention of BCC, although with toxic effects. Other studies have attempted BCC chemoprevention through targeting the promotional phase of the disease especially the inflammatory component. The compounds that have been utilized in pre-clinical and/or clinical studies include green and black tea, difluoromethylornithine, thymidine dinucleotide, retinoids, non-steroidal anti-inflammatory drugs, vitamin D3, and silibinin. In this review, we have discussed genetic and epigenetic modifications that occur during BCC development as well as the current state of BCC pre-clinical and clinical chemoprevention studies.
Collapse
Affiliation(s)
- Cynthia Tilley
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado, Aurora, Colorado
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado, Aurora, Colorado
| |
Collapse
|
37
|
Abstract
Cancer metastasis is highly inefficient and complex. Common features of metastatic cancer cells have been observed using cancer cell lines and genetically reconstituted mouse and human tumor xenograft models. These include cancer cell interaction with the tumor microenvironment and the ability of cancer cells to sense extracellular stimuli and adapt to adverse growth conditions. This review summarizes the coordinated response of cancer cells to soluble growth factors, such as RANKL, by a unique feed forward mechanism employing coordinated upregulation of RANKL and c-Met with downregulation of androgen receptor. The RANK-mediated signal network was found to drive epithelial to mesenchymal transition in prostate cancer cells, promote osteomimicry and the ability of prostate cancer cells to assume stem cell and neuroendocrine phenotypes, and confer the ability of prostate cancer cells to home to bone. Prostate cancer cells with activated RANK-mediated signal network were observed to recruit and even transform the non-tumorigenic prostate cancer cells to participate in bone and soft tissue colonization. The coordinated regulation of cancer cell invasion and metastasis by the feed forward mechanism involving RANKL, c-Met, transcription factors, and VEGF-neuropilin could offer new therapeutic opportunities to target prostate cancer bone and soft tissue metastases.
Collapse
Affiliation(s)
- Gina Chia-Yi Chu
- Departments of Medicine and Surgery, Samuel Orchin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA,
| | | |
Collapse
|
38
|
Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin. Toxicol Appl Pharmacol 2015; 285:71-8. [PMID: 25791923 DOI: 10.1016/j.taap.2015.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 01/12/2023]
Abstract
Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants.
Collapse
|
39
|
Tilley C, Deep G, Agarwal C, Wempe MF, Biedermann D, Valentová K, Kren V, Agarwal R. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Mol Carcinog 2014; 55:3-14. [PMID: 25492239 DOI: 10.1002/mc.22253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 01/08/2023]
Abstract
Basal cell carcinoma (BCC) is the most common cancer worldwide, and its current treatment options are insufficient and toxic. Surprisingly, unlike several other malignancies, chemopreventive efforts against BCC are almost lacking. Silibinin, a natural agent from milk thistle seeds, has shown strong efficacy against several cancers including ultraviolet radiation-induced skin (squamous) cancer; however, its potential activity against BCC is not yet examined. Herein, for the first time, we report the efficacy of silibinin and its oxidation product 2,3-dehydrosilibinin (DHS) against BCC both in vitro and in vivo using ASZ (p53 mutated) and BSZ (p53 deleted) cell lines derived from murine BCC tumors. Both silibinin and DHS significantly inhibited cell growth and clonogenicity while inducing apoptosis in a dose- and time-dependent manner, with DHS showing higher activity at lower concentrations. Both agents also inhibited the mitogenic signaling by reducing EGFR, ERK1/2, Akt, and STAT3 phosphorylation and suppressed the activation of transcription factors NF-κB and AP-1. More importantly, in an ectopic allograft model, oral administration of silibinin and DHS (200 mg/kg body weight) strongly inhibited the ASZ tumor growth by 44% and 71% (P < 0.05), respectively, and decreased the expression of proliferation biomarkers (PCNA and cyclin D1) as well as NF-κB p50 and c-Fos in the tumor tissues. Taken together, these results provide the first evidence for the efficacy and usefulness of silibinin and its derivative DHS against BCC, and suggest the need for additional studies with these agents in pre-clinical and clinical BCC chemoprevention and therapy models.
Collapse
Affiliation(s)
- Cynthia Tilley
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado
| | - David Biedermann
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská, Prague, Czech Republic
| | - Vladimir Kren
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská, Prague, Czech Republic
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
40
|
Huh JE, Lee WI, Kang JW, Nam D, Choi DY, Park DS, Lee SH, Lee JD. Formononetin attenuates osteoclastogenesis via suppressing the RANKL-induced activation of NF-κB, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 signaling pathway. JOURNAL OF NATURAL PRODUCTS 2014; 77:2423-31. [PMID: 25397676 DOI: 10.1021/np500417d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Formononetin (1), a plant-derived phytoestrogen, possesses bone protective properties. To address the potential therapeutic efficacy and mechanism of action of 1, we investigated its antiosteoclastogenic activity and its effect on nuclear factor-kappaB ligand (RANKL)-induced bone-marrow-derived macrophages (BMMs). Compound 1 markedly inhibited RANKL-induced osteoclast differentiation in the absence of cytotoxicity, by regulating the expression of osteoprotegerin (OPG) and RANKL in BMMs and in cocultured osteoblasts. Compound 1 significantly inhibited RANKL-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated on activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) in a concentration-dependent manner. These effects were accompanied by a decrease in RANKL-induced activation of the NF-κB p65 subunit, degradation of inhibitor κBα (IκBα), induction of NF-κB, and phosphorylation of AKT, extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). NF-κB siRNA suppressed AKT, ERK, JNK, and p38 MAPK phosphorylation. Furthermore, 1 significantly suppressed c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key transcription factors during osteoclastogenesis. SP600125, a specific inhibitor of JNK, reduced RANKL-induced expression of phospho-c-Jun, c-Fos, and NFATc1 and inhibited osteoclast formation. These results suggested that 1 acted as an antiresorption agent by blocking osteoclast activation.
Collapse
Affiliation(s)
- Jeong-Eun Huh
- Oriental Medicine Research Center for Bone and Joint Disease, East-West Bone & Joint Research Institute, Kyung Hee University , 149, Sangil-dong, Gangdong-gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Merkle W. Prostatakarzinomprophylaxe durch Nahrungsergänzungsmittel. Urologe A 2014; 53:1610-9. [DOI: 10.1007/s00120-014-3614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Yang Y, Qin J, Lan L, Li N, Wang C, He P, Liu F, Ni H, Wang Y. M-CSF cooperating with NFκB induces macrophage transformation from M1 to M2 by upregulating c-Jun. Cancer Biol Ther 2013; 15:99-107. [PMID: 24100343 DOI: 10.4161/cbt.26718] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests tumor-associated macrophages (TAMs) are polarized M2 subtype of macrophage that exerts pro-tumor effects and promote the malignancy of some cancers, but the concrete mechanism is not well defined. Our previous research exhibited that proto-oncogene AP-1 regulated IL-6 expression in macrophages and promoted the formation of M2 macrophages. In this study, we investigate whether extra-cellular stimulus M-CSF help this process or nuclear factor NFκB has a synergistic role in the activation state of polarized M2 subtype of macrophage. RAW 264.7 macrophage and 4T1 mouse breast cancer cells were co-cultured to reconstruct tumor microenvironment. Being co-cultured with 4T1 or its supernatant, the expression of c-Jun, the member of AP-1 family, has a dramatically increase both on the level of gene and on the protein in RAW 264.7 macrophages, but the expression of c-Fos does not increase neither on the level of gene nor on the protein. After co-cultured with 4T1, RAW 264.7 has a higher consumption of M-CSF than RAW 264.7 macrophages alone. With the stimulation of M-CSF, the mRNA of c-Jun increased significantly, but decreased remarkably after adding the anti-M-CSF. And at the same time, p50, the member of NFκB family, has a similar tendency to c-Jun. WB results suggest that with the stimulation of M-CSF, p-Jun in nuclear increases heavily but decreases after the neutralizing antibody added. Coimmunoprecipitation and immunoblotting techniques confirmed that c-Jun and p50 NFκB coprecipitated, and c-Jun protein expression is properly enhanced with rM-CSF effect. In conclusion, M-CSF induces macrophage transformation by upregulating c-Jun with a certain synergy of NFκB. Our study may present a novel therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Yujiao Yang
- School of Medicine; Nankai University; Tianjin, PR China
| | - Junfang Qin
- School of Medicine; Nankai University; Tianjin, PR China
| | - Lan Lan
- Tianjin Medical University; Tianjin Cancer Hospital; Tianjin, PR China
| | - Ning Li
- School of Medicine; Nankai University; Tianjin, PR China
| | - Chengfang Wang
- School of Medicine; Nankai University; Tianjin, PR China
| | - Pengfei He
- School of Medicine; Nankai University; Tianjin, PR China
| | - Fang Liu
- School of Medicine; Nankai University; Tianjin, PR China
| | - Hong Ni
- School of Medicine; Nankai University; Tianjin, PR China
| | - Yue Wang
- School of Medicine; Nankai University; Tianjin, PR China
| |
Collapse
|