1
|
Mei J, Jiang XY, Tian HX, Rong DC, Song JN, Wang L, Chen YS, Wong RCB, Guo CX, Wang LS, Wang LY, Wang PY, Yin JY. Anoikis in cell fate, physiopathology, and therapeutic interventions. MedComm (Beijing) 2024; 5:e718. [PMID: 39286778 PMCID: PMC11401975 DOI: 10.1002/mco2.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Xue-Yao Jiang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui-Xiang Tian
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Ding-Chao Rong
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
| | - Jia-Nan Song
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- School of Life Sciences Westlake University Hangzhou Zhejiang China
| | - Luozixian Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Yuan-Shen Chen
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Raymond C B Wong
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology the Third Xiangya Hospital Central South University Changsha Hunan China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Lei-Yun Wang
- Department of Pharmacy Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Peng-Yuan Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
2
|
Chou CF, Huang CC, Bin Dabil N, Chang PL. Assessing SPP1/Osteopontin (OPN) Splice Variants and Their Association to Nonmelanoma Skin Cancer by Absolute Quantification: Identification of OPN-5 Subvariants and Their Protein Coding Potential. Cancer Invest 2021; 39:559-570. [PMID: 34043476 DOI: 10.1080/07357907.2021.1933015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The study evaluated whether SPP1/osteopontin (OPN) splice variants are differentially expressed in nonmelanoma skin cancer compared to normal skin. The absolute number of mRNA molecules of OPN-a predominated in normal skin and nonmelanoma skin cancer compared to OPN-b, OPN-c, and OPN-5. However, mRNAs of OPN-a, OPN-b, and OPN-c were expressed in higher levels in cutaneous squamous cell carcinomas (cSCCs) and basal cell carcinomas relative to normal skin. Additionally, OPN-5 expression was higher than OPN-b and OPN-c, and OPN-c, in normal skin and nonmelanoma skin cancer, respectively. Furthermore, we identified four OPN-5 splice variants, which were cloned and analyzed for protein expression.
Collapse
Affiliation(s)
- Chu-Fang Chou
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Conway C Huang
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Noura Bin Dabil
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pi-Ling Chang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Chou CF, Hsieh YH, Grubbs CJ, Atigadda VR, Mobley JA, Dummer R, Muccio DD, Eto I, Elmets CA, Garvey WT, Chang PL. The retinoid X receptor agonist, 9-cis UAB30, inhibits cutaneous T-cell lymphoma proliferation through the SKP2-p27kip1 axis. J Dermatol Sci 2018; 90:343-356. [PMID: 29599065 PMCID: PMC6329374 DOI: 10.1016/j.jdermsci.2018.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Bexarotene (Targretin®) is currently the only FDA approved retinoid X receptor (RXR) -selective agonist for the treatment of cutaneous T-cell lymphomas (CTCLs). The main side effects of bexarotene are hypothyroidism and elevation of serum triglycerides (TGs). The novel RXR ligand, 9-cis UAB30 (UAB30) does not elevate serum TGs or induce hypothyroidism in normal subjects. OBJECTIVES To assess preclinical efficacy and mechanism of action of UAB30 in the treatment of CTCLs and compare its action with bexarotene. METHODS With patient-derived CTCL cell lines, we evaluated UAB30 function in regulating growth, apoptosis, cell cycle check points, and cell cycle-related markers. RESULTS Compared to bexarotene, UAB30 had lower half maximal inhibitory concentration (IC50) values and was more effective in inhibiting the G1 cell cycle checkpoint. Both rexinoids increased the stability of the cell cycle inhibitor, p27kip1 protein, in part, through targeting components involved in the ubiquitination-proteasome system: 1) decreasing SKP2, a F-box protein that binds and targets p27kip1 for degradation by 26S proteasome and 2) suppressing 20S proteasome activity (cell line-dependent) through downregulation of PSMA7, a component of the 20S proteolytic complex in 26S proteasome. CONCLUSIONS UAB30 and bexarotene induce both early cell apoptosis and suppress cell proliferation. Inhibition of the G1 to S cell cycle transition by rexinoids is mediated, in part, through downregulation of SKP2 and/or 20S proteasome activity, leading to increased p27kip1 protein stability. Because UAB30 has minimal effect in elevating serum TGs and inducing hypothyroidism, it is potentially a better alternative to bexarotene for the treatment of CTCLs.
Collapse
Affiliation(s)
- Chu-Fang Chou
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Yu-Hua Hsieh
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Clinton J Grubbs
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Venkatram R Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Switzerland
| | - Donald D Muccio
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Isao Eto
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Pi-Ling Chang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.
| |
Collapse
|
4
|
Kamioka Y, Takakura K, Sumiyama K, Matsuda M. Intravital Förster resonance energy transfer imaging reveals osteopontin-mediated polymorphonuclear leukocyte activation by tumor cell emboli. Cancer Sci 2017; 108:226-235. [PMID: 27960041 PMCID: PMC5329161 DOI: 10.1111/cas.13132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022] Open
Abstract
Myeloid‐derived suppressor cells (MDSCs) cause paraneoplastic leukemoid reactions and facilitate tumor cell metastasis. However, the interaction of MDSCs with tumor cells in live tissue has not been adequately visualized. To accomplish this task, we developed an intravital imaging protocol to observe metastasized tumor cells in mouse lungs. For visualization of the activation of MDSCs, bone marrow cells derived from transgenic mice expressing a Förster resonance energy transfer biosensor for ERK were implanted into host mice. Under a two‐photon excitation microscope, numerous polymorphonuclear cells (PMNs) were found to infiltrate the lungs of tumor‐bearing mice in which 4T1 mammary tumor cells were implanted into the footpads. By Förster resonance energy transfer imaging, we found ERK activation in PMNs around the 4T1 tumor emboli in the lungs. Because antibody array analysis implied the involvement of osteopontin (OPN) in the metastasis of 4T1 cells, we further analyzed the effect of OPN knockdown. The OPN knockdown in 4T1 cells did not affect the cell growth, but markedly suppressed lung metastasis of 4T1 cells and ERK activation in PMNs in the lung. Intravenous injection of recombinant OPN restored the lung metastasis of OPN‐deficient 4T1 cells, suggesting that OPN functioned in a paracrine manner. It has been reported that ERK activation of neutrophils causes NETosis and that PMNs promote metastasis of tumor cells by NETosis. In agreement with previous reports, the NETosis inhibitor DNase I inhibited lung metastasis of 4T1 cells. These observations suggest that OPN promotes metastasis of 4T1 cells by activating PMNs and inducing NETosis.
Collapse
Affiliation(s)
- Yuji Kamioka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Kanako Takakura
- Imaging Platform for Spatio-Temporal Regulation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, Quantitative Biology Center, RIKEN, Osaka, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Receptor activator of NF-κB ligand induces cell adhesion and integrin α2 expression via NF-κB in head and neck cancers. Sci Rep 2016; 6:23545. [PMID: 27009236 PMCID: PMC4806381 DOI: 10.1038/srep23545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/09/2016] [Indexed: 01/16/2023] Open
Abstract
Cellular interactions with the extracellular matrix play critical roles in tumor progression. We previously reported that receptor activator of NF-κB ligand (RANKL) specifically facilitates head and neck squamous cell carcinoma (HNSCC) progression in vivo. Here, we report a novel role for RANKL in the regulation of cell adhesion. Among the major type I collagen receptors, integrin α2 was significantly upregulated in RANKL-expressing cells, and its knockdown suppressed cell adhesion. The mRNA abundance of integrin α2 positively correlated with that of RANKL in human HNSCC tissues. We also revealed that RANK-NF-κB signaling mediated integrin α2 expression in an autocrine/paracrine manner. Interestingly, the amount of active integrin β1 on the cell surface was increased in RANKL-expressing cells through the upregulation of integrin α2 and endocytosis. Moreover, the RANK-integrin α2 pathway contributed to RANKL-dependent enhanced survival in a collagen gel and inhibited apoptosis in a xenograft model, demonstrating an important role for RANKL-mediated cell adhesion in three-dimensional environments.
Collapse
|
6
|
Chang PL, Hsieh YH, Wang CC, Juliana MM, Tsuruta Y, Timares L, Elmets C, Ho KJ. Osteopontin facilitates ultraviolet B-induced squamous cell carcinoma development. J Dermatol Sci 2014; 75:121-32. [PMID: 24888687 PMCID: PMC4128184 DOI: 10.1016/j.jdermsci.2014.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Osteopontin (OPN) is a matricellular glycoprotein that is markedly expressed in cutaneous squamous cell carcinomas (cSCCs) and in actinic keratoses implicating its role in photocarcinogenesis. OBJECTIVE To determine whether OPN facilitates the development of cSCC and its function. METHODS cSCCs development was compared between wild-type (WT) and OPN-null mice subjected to UVB irradiation for 43 weeks. UVB-induced OPN expression was determined by Western blot, immunoprecipitation, ELISA, and semi-quantitative RT-PCR. Epidermal layer and TUNEL analyses assessed if OPN mediates UVB-induced epidermal hyperplasia or suppresses UVB-induced apoptosis of basal keratinocytes, respectively. In vitro experiments determined whether OPN enhances cell survival of UVB-induced apoptosis and its potential mechanisms. Immunohistochemical analyses of epidermis assessed the expression of CD44 and focal adhesion kinase (FAK), molecules that mediate OPN survival function. RESULTS Compared to female WT mice, OPN-null mice did not develop cSCCs. UVB irradiation stimulated OPN protein expression in the dorsal skin by 11h and remains high at 24-48h. OPN did not mediate UVB-induced epidermal hyperplasia; instead, it protected basal keratinocytes from undergoing apoptosis upon UVB exposure. Likewise, the addition of OPN suppressed UVB-induced OPN-null cSCC cell apoptosis, the activation of caspase-9 activity, and increased phosphorylation of FAK at Y397. Furthermore, the expression of CD44 and FAK in WT mice epidermis was greater than that of OPN-null mice prior to and during early acute UVB exposure. CONCLUSION These data support the hypothesis that chronic UVB-induced OPN expression protects the survival of initiated basal keratinocytes and, consequently, facilitates cSCC develop.
Collapse
MESH Headings
- Animals
- Apoptosis/radiation effects
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/prevention & control
- Cell Line
- Cell Survival/radiation effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Epidermis/metabolism
- Epidermis/pathology
- Epidermis/radiation effects
- Female
- Focal Adhesion Kinase 1/metabolism
- Gene Expression Regulation
- Hyaluronan Receptors/metabolism
- Hyperplasia
- Keratinocytes/metabolism
- Keratinocytes/pathology
- Keratinocytes/radiation effects
- Mice, 129 Strain
- Mice, Knockout
- Neoplasms, Radiation-Induced/genetics
- Neoplasms, Radiation-Induced/metabolism
- Neoplasms, Radiation-Induced/pathology
- Neoplasms, Radiation-Induced/prevention & control
- Osteopontin/deficiency
- Osteopontin/genetics
- Osteopontin/metabolism
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Skin Neoplasms/prevention & control
- Time Factors
- Ultraviolet Rays/adverse effects
Collapse
Affiliation(s)
- Pi-Ling Chang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Yu-Hua Hsieh
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao-Cheng Wang
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Margaret Juliana
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuko Tsuruta
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laura Timares
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kang-Jey Ho
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Shevde LA, Samant RS. Role of osteopontin in the pathophysiology of cancer. Matrix Biol 2014; 37:131-41. [PMID: 24657887 PMCID: PMC5916777 DOI: 10.1016/j.matbio.2014.03.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
Osteopontin (OPN) is a multifunctional cytokine that impacts cell proliferation, survival, drug resistance, invasion, and stem like behavior. Due to its critical involvement in regulating cellular functions, its aberrant expression and/or splicing is functionally responsible for undesirable alterations in disease pathologies, specifically cancer. It is implicated in promoting invasive and metastatic progression of many carcinomas. Due to its autocrine and paracrine activities OPN has been shown to be a crucial mediator of cellular cross talk and an influential factor in the tumor microenvironment. OPN has been implicated as a prognostic and diagnostic marker for several cancer types. It has also been explored as a possible target for treatment. In this article we hope to provide a broad perspective on the importance of OPN in the pathophysiology of cancer.
Collapse
Affiliation(s)
- Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| | - Rajeev S Samant
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| |
Collapse
|