1
|
Rahmati A, Mafi A, Vakili O, Soleymani F, Alishahi Z, Yahyazadeh S, Gholinezhad Y, Rezaee M, Johnston TP, Sahebkar A. Non-coding RNAs in leukemia drug resistance: new perspectives on molecular mechanisms and signaling pathways. Ann Hematol 2024; 103:1455-1482. [PMID: 37526673 DOI: 10.1007/s00277-023-05383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, Autophagy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Alishahi
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
| |
Collapse
|
2
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
3
|
Miari KE, Williams MTS. Stromal bone marrow fibroblasts and mesenchymal stem cells support acute myeloid leukaemia cells and promote therapy resistance. Br J Pharmacol 2024; 181:216-237. [PMID: 36609915 DOI: 10.1111/bph.16028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
The bone marrow (BM) is the primary site of adult haematopoiesis, where stromal elements (e.g. fibroblasts and mesenchymal stem cells [MSCs]) work in concert to support blood cell development. However, the establishment of an abnormal clone can lead to a blood malignancy, such as acute myeloid leukaemia (AML). Despite our increased understanding of the pathophysiology of the disease, patient survival remains suboptimal, mainly driven by the development of therapy resistance. In this review, we highlight the importance of bone marrow fibroblasts and MSCs in health and acute myeloid leukaemia and their impact on patient prognosis. We discuss how stromal elements reduce the killing effects of therapies via a combination of contact-dependent (e.g. integrins) and contact-independent (i.e. secreted factors) mechanisms, accompanied by the establishment of an immunosuppressive microenvironment. Importantly, we underline the challenges of therapeutically targeting the bone marrow stroma to improve acute myeloid leukaemia patient outcomes, due to the inherent heterogeneity of stromal cell populations. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
4
|
Singh AK, Prasad P, Cancelas JA. Mesenchymal stromal cells, metabolism, and mitochondrial transfer in bone marrow normal and malignant hematopoiesis. Front Cell Dev Biol 2023; 11:1325291. [PMID: 38169927 PMCID: PMC10759248 DOI: 10.3389/fcell.2023.1325291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Hematopoietic stem cell (HSC) transplantation-based treatments are in different phases of clinical development, ranging from current therapies to a promise in the repair and regeneration of diseased tissues and organs. Mesenchymal stromal/stem cells (MSCs), which are fibroblast-like heterogeneous progenitors with multilineage differentiation (osteogenic, chondrogenic, and adipogenic) and self-renewal potential, and exist in the bone marrow (BM), adipose, and synovium, among other tissues, represent one of the most widely used sources of stem cells in regenerative medicine. MSCs derived from bone marrow (BM-MSCs) exhibit a variety of traits, including the potential to drive HSC fate and anti-inflammatory and immunosuppressive capabilities via paracrine activities and interactions with the innate and adaptive immune systems. The role of BM-MSC-derived adipocytes is more controversial and may act as positive or negative regulators of benign or malignant hematopoiesis based on their anatomical location and functional crosstalk with surrounding cells in the BM microenvironment. This review highlights the most recent clinical and pre-clinical findings on how BM-MSCs interact with the surrounding HSCs, progenitors, and immune cells, and address some recent insights on the mechanisms that mediate MSCs and adipocyte metabolic control through a metabolic crosstalk between BM microenvironment cells and intercellular mitochondrial transfer in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Abhishek K. Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Parash Prasad
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
5
|
Jian FX, Bao PX, Li WF, Cui YH, Hong HG. Negative regulation of CD44st by miR-138-5p affects the invasive ability of breast cancer cells and patient prognosis after breast cancer surgery. BMC Cancer 2023; 23:269. [PMID: 36964570 PMCID: PMC10037889 DOI: 10.1186/s12885-023-10738-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/26/2023] Open
Abstract
OBJECTIVE To investigate how the negative regulation of CD44st by miR-138-5p affects the invasive ability of breast cancer cell lines and prognosis in postoperative breast cancer patients. METHODS RT-PCR, qRT-PCR, and western blot assays were used to detect the expression of CD44s, CD44v6, and CD44st at both mRNA and protein levels. The expression of miR-138-5p in breast cancer cell lines was also evaluated. The binding ability of miR-138-5p to CD44st was determined via a dual-luciferase assay. The CD44 protein expression in breast cancer tissues was detected using immunohistochemistry. A Transwell assay was used to detect the invasive ability of tumor cells. The correlation between CD44st and miR-138-5p mRNA expression in breast cancer tissues was evaluated using qRT-PCR, and the relationship between clinicopathological features was statistically analyzed. RESULTS CD44s and CD44v6 were highly expressed in MDAMB-231 cell line, while CD44st was highly expressed in MCF-7/Adr and Skbr-3 cells. None of the CD44 isoforms were expressed in MCF-7 cells. The miR-138-5p was highly expressed in MCF-7 cells, but not in MCF-7/Adr, Skbr-3, and MDAMB-231 cells. The dual-luciferase assay suggested that miR-138-5p could bind to wild-type CD44st 3'-UTR, miR-138-5p overexpression significantly inhibited the expression level of CD44 protein in MCF-7/Adr cells, and miR-138-5p + CD44st (3'-UTR)-treated MCF-7/Adr and Skbr-3 cells were significantly less invasive than those in the control group (P < 0.05). RT-PCR results for 80 postoperative breast cancer patients showed that the mRNA expression rate for CD44st was higher in cancer tissues than in paracancerous tissues, and the expression rate of miR-138-5p was higher in paracancerous tissues than in cancerous tissues (P < 0.01). In cancer tissues, CD44st was negatively correlated with miR-138-5p expression, with correlation coefficient r = -0.76 (Pearson's correlation), coefficient of determination R2 = 0.573, F = 106.89, and P < 0.001. The median overall survival value for patients in the low miR-138-5p expression group was 40.39 months [95% confidence interval (CI): 35.59-45.18 months] and 56.30 months (95% CI: 54.38-58.21 months) for patients in the high-expression group, with a log rank (Mantel-Cox) of 13.120, one degree of freedom, and P < 0.001. CONCLUSION In breast cancer cell lines, miR-138-5p negatively regulated expression of CD44st and affected the invasive ability of tumor cells and patient prognosis after breast cancer surgery.
Collapse
Affiliation(s)
- Fang Xin Jian
- Department of Oncology, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, China
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, No.41, Hailian East Road, Lianyungang, 222000, Jiangsu, China
| | - Peng Xiao Bao
- Department of Oncology, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, China
| | | | - Yan Hai Cui
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, No.41, Hailian East Road, Lianyungang, 222000, Jiangsu, China.
| | - Hang Guan Hong
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, No.41, Hailian East Road, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
6
|
Park HJ, Gregory MA, Zaberezhnyy V, Goodspeed A, Jordan CT, Kieft JS, DeGregori J. Therapeutic resistance in acute myeloid leukemia cells is mediated by a novel ATM/mTOR pathway regulating oxidative phosphorylation. eLife 2022; 11:e79940. [PMID: 36259537 PMCID: PMC9645811 DOI: 10.7554/elife.79940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
While leukemic cells are susceptible to various therapeutic insults, residence in the bone marrow microenvironment typically confers protection from a wide range of drugs. Thus, understanding the unique molecular changes elicited by the marrow is of critical importance toward improving therapeutic outcomes. In this study, we demonstrate that aberrant activation of oxidative phosphorylation serves to induce therapeutic resistance in FLT3 mutant human AML cells challenged with FLT3 inhibitor drugs. Importantly, our findings show that AML cells are protected from apoptosis following FLT3 inhibition due to marrow-mediated activation of ATM, which in turn upregulates oxidative phosphorylation via mTOR signaling. mTOR is required for the bone marrow stroma-dependent maintenance of protein translation, with selective polysome enrichment of oxidative phosphorylation transcripts, despite FLT3 inhibition. To investigate the therapeutic significance of this finding, we tested the mTOR inhibitor everolimus in combination with the FLT3 inhibitor quizartinib in primary human AML xenograft models. While marrow resident AML cells were highly resistant to quizartinib alone, the addition of everolimus induced profound reduction in tumor burden and prevented relapse. Taken together, these data provide a novel mechanistic understanding of marrow-based therapeutic resistance and a promising strategy for improved treatment of FLT3 mutant AML patients.
Collapse
Affiliation(s)
- Hae J Park
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Mark A Gregory
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical CampusAuroraUnited States
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Craig T Jordan
- Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
7
|
Regulatory T cells promote the stemness of leukemia stem cells through IL10 cytokine-related signaling pathway. Leukemia 2022; 36:403-415. [PMID: 34381181 DOI: 10.1038/s41375-021-01375-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Tregs) could maintain the characteristics of stem cells and inhibit the differentiation of normal hematopoietic stem/progenitor cells. Recent studies have shown that Tregs, as an important component of acute myeloid leukemia (AML) microenvironments, can help AML cells to evade immune surveillance. However, their function in directly regulating the stemness of AML cells remains elusive. In this study, the increased stemness of AML cells promoted by Tregs was verified in vitro and in vivo. The cytokines released by Tregs were explored, the highly expressed anti-inflammatory cytokine IL10 was found, which could promote the stemness of AML cells through the activation of PI3K/AKT signal pathway. Moreover, disrupting the IL10/IL10R/PI3K/AKT signal in AML/ETO c-kitmut (A/Ec) leukemia mice could prolong the mice survival and reduce the stemness of A/Ec leukemia cells. Finally, it was confirmed in patient samples that the proportion of Tregs to leukemia stem cells (LSCs) was positively correlated, and in CD34+ primary AML cells, the activation of PI3K/AKT was stronger in patients with high Tregs' infiltration. After rhIL10 treatment, primary AML cells showed increased activation of PI3K/AKT signaling. Therefore, blocking the interaction between Tregs and AML cells may be a new approach to target LSCs in AML treatment.
Collapse
|
8
|
Ashok D, Polcik L, Dannewitz Prosseda S, Hartmann TN. Insights Into Bone Marrow Niche Stability: An Adhesion and Metabolism Route. Front Cell Dev Biol 2022; 9:798604. [PMID: 35118078 PMCID: PMC8806031 DOI: 10.3389/fcell.2021.798604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
The bone marrow microenvironment provides critical cues for hematopoietic stem cell (HSC) self-renewal and differentiation and contributes to their malignant conversion. The microenvironment comprises a complex mixture of multiple cell types, soluble factors, and extracellular matrix in specialized regions termed 'niches.' Positioning of the various cellular players within these niches depends on their repertoire of adhesion molecules and chemotactic signaling, involving integrins and chemokine receptors and the corresponding intracellular players such as kinases and GTPases. The mechanical role of adhesion is to control the strength and morphology of the cell-cell and cell-extracellular matrix contacts and thereby the energy needed for the optimal localization of cells to their surroundings. While it is clear that biomechanical adhesive bonds are energetically expensive, the crosstalk between cell adhesion and metabolic pathways in the normal and malignant microenvironment is far from understood. The metabolic profile of the various cell types within the niche includes key molecules such as AMPK, glucose, mTOR, and HIF-1α. Here, we describe our most recent understanding of how the interplay between adhesion and these metabolic components is indispensable for bone marrow niche stability. In parallel, we compare the altered crosstalk of different cell types within the bone marrow niches in hematological malignancies and propose potential therapeutic associations.
Collapse
Affiliation(s)
- Driti Ashok
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Laura Polcik
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Svenja Dannewitz Prosseda
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Yaghobi Z, Movassaghpour A, Talebi M, Abdoli Shadbad M, Hajiasgharzadeh K, Pourvahdani S, Baradaran B. The role of CD44 in cancer chemoresistance: A concise review. Eur J Pharmacol 2021; 903:174147. [PMID: 33961871 DOI: 10.1016/j.ejphar.2021.174147] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022]
Abstract
CD44 is a cell surface adhesion molecule, which is overexpressed on cancer stem cells. The interaction of CD44 with hyaluronan is responsible for tumor development, metastasis, and expression of the chemoresistant phenotype. The overexpression of CD44 impedes the cytotoxic effect of chemotherapy medications in various cancers. Therefore, the high expression of CD44 is associated with a poor prognosis in affected patients. This high expression of CD44 in various cancers has provided an ample opportunity for the treatment of patients with chemoresistant malignancy. This review aims to demonstrate the various cross-talk between CD44 and intracellular and extracellular factors and highlight its role in developing chemoresistant tumors in some troublesome cancers.
Collapse
Affiliation(s)
- Zohreh Yaghobi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Shiva Pourvahdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Yeh M, Wang YY, Yoo JY, Oh C, Otani Y, Kang JM, Park ES, Kim E, Chung S, Jeon YJ, Calin GA, Kaur B, Zhao Z, Lee TJ. MicroRNA-138 suppresses glioblastoma proliferation through downregulation of CD44. Sci Rep 2021; 11:9219. [PMID: 33911148 PMCID: PMC8080729 DOI: 10.1038/s41598-021-88615-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor suppressive microRNAs (miRNAs) are increasingly implicated in the development of anti-tumor therapy by reprogramming gene network that are aberrantly regulated in cancer cells. This study aimed to determine the therapeutic potential of putative tumor suppressive miRNA, miR-138, against glioblastoma (GBM). Whole transcriptome and miRNA expression profiling analyses on human GBM patient tissues identified miR-138 as one of the significantly downregulated miRNAs with an inverse correlation with CD44 expression. Transient overexpression of miR-138 in GBM cells inhibited cell proliferation, cell cycle, migration, and wound healing capability. We unveiled that miR-138 negatively regulates the expression of CD44 by directly binding to the 3' UTR of CD44. CD44 inhibition by miR-138 resulted in an inhibition of glioblastoma cell proliferation in vitro through cell cycle arrest as evidenced by a significant induction of p27 and its translocation into nucleus. Ectopic expression of miR-138 also increased survival rates in mice that had an intracranial xenograft tumor derived from human patient-derived primary GBM cells. In conclusion, we demonstrated a therapeutic potential of tumor suppressive miR-138 through direct downregulation of CD44 for the treatment of primary GBM.
Collapse
Affiliation(s)
- Margaret Yeh
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Yin-Ying Wang
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX, 77030, USA
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Christina Oh
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Yoshihiro Otani
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Jin Muk Kang
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Eun S Park
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Eunhee Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Sangwoon Chung
- Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, USA
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - George A Calin
- Department of Translational Molecular Pathology, Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX, 77030, USA.
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Deak D, Gorcea-Andronic N, Sas V, Teodorescu P, Constantinescu C, Iluta S, Pasca S, Hotea I, Turcas C, Moisoiu V, Zimta AA, Galdean S, Steinheber J, Rus I, Rauch S, Richlitzki C, Munteanu R, Jurj A, Petrushev B, Selicean C, Marian M, Soritau O, Andries A, Roman A, Dima D, Tanase A, Sigurjonsson O, Tomuleasa C. A narrative review of central nervous system involvement in acute leukemias. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:68. [PMID: 33553361 PMCID: PMC7859772 DOI: 10.21037/atm-20-3140] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute leukemias (both myeloid and lymphoblastic) are a group of diseases for which each year more successful therapies are implemented. However, in a subset of cases the overall survival (OS) is still exceptionally low due to the infiltration of leukemic cells in the central nervous system (CNS) and the subsequent formation of brain tumors. The CNS involvement is more common in acute lymphocytic leukemia (ALL), than in adult acute myeloid leukemia (AML), although the rates for the second case might be underestimated. The main reasons for CNS invasion are related to the expression of specific adhesion molecules (VLA-4, ICAM-1, VCAM, L-selectin, PECAM-1, CD18, LFA-1, CD58, CD44, CXCL12) by a subpopulation of leukemic cells, called “sticky cells” which have the ability to interact and adhere to endothelial cells. Moreover, the microenvironment becomes hypoxic and together with secretion of VEGF-A by ALL or AML cells the permeability of vasculature in the bone marrow increases, coupled with the disruption of blood brain barrier. There is a single subpopulation of leukemia cells, called leukemia stem cells (LSCs) that is able to resist in the new microenvironment due to its high adaptability. The LCSs enter into the arachnoid, migrate, and intensively proliferate in cerebrospinal fluid (CSF) and consequently infiltrate perivascular spaces and brain parenchyma. Moreover, the CNS is an immune privileged site that also protects leukemic cells from chemotherapy. CD56/NCAM is the most important surface molecule often overexpressed by leukemic stem cells that offers them the ability to infiltrate in the CNS. Although asymptomatic or with unspecific symptoms, CNS leukemia should be assessed in both AML/ALL patients, through a combination of flow cytometry and cytological analysis of CSF. Intrathecal therapy (ITT) is a preventive measure for CNS involvement in AML and ALL, still much research is needed in finding the appropriate target that would dramatically lower CNS involvement in acute leukemia.
Collapse
Affiliation(s)
- Dalma Deak
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nicolae Gorcea-Andronic
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Valentina Sas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Intensive Care Unit, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ionut Hotea
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Turcas
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vlad Moisoiu
- Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Galdean
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Jakob Steinheber
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Rus
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Sebastian Rauch
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cedric Richlitzki
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bobe Petrushev
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Selicean
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Mirela Marian
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Olga Soritau
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alexandra Andries
- Department of Radiology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Andrei Roman
- Department of Radiology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Oswald JT, Patel H, Khan D, Jeorje NN, Golzar H, Oswald EL, Tang S. Drug Delivery Systems Using Surface Markers for Targeting Cancer Stem Cells. Curr Pharm Des 2020; 26:2057-2071. [PMID: 32250211 DOI: 10.2174/1381612826666200406084900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
The innate abilities of cancer stem cells (CSCs), such as multi-drug resistance, drug efflux, quiescence and ionizing radiation tolerance, protect them from most traditional chemotherapeutics. As a result, this small subpopulation of persistent cells leads to more aggressive and chemoresistant cancers, causing tumour relapse and metastasis. This subpopulation is differentiated from the bulk tumour population through a wide variety of surface markers expressed on the cell surface. Recent developments in nanomedicine and targeting delivery methods have given rise to new possibilities for specifically targeting these markers and preferentially eliminating CSCs. Herein, we first summarize the range of surface markers identifying CSC populations in a variety of cancers; then, we discuss recent attempts to actively target CSCs and their niches using liposomal, nanoparticle, carbon nanotube and viral formulations.
Collapse
Affiliation(s)
- James T Oswald
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Haritosh Patel
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Daid Khan
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ninweh N Jeorje
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Hossein Golzar
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Erin L Oswald
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
13
|
Razi E, Radak M, Mahjoubin-Tehran M, Talebi S, Shafiee A, Hajighadimi S, Moradizarmehri S, Sharifi H, Mousavi N, Sarvizadeh M, Nejati M, Taghizadeh M, Ghasemi F. Cancer stem cells as therapeutic targets of pancreatic cancer. Fundam Clin Pharmacol 2019; 34:202-212. [PMID: 31709581 DOI: 10.1111/fcp.12521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
The discovery of stem cells and their potential abilities in self-renewal and differentiation has opened a new horizon in medicine. Scientists have found a small population of stem cells in some types of cancers with the same functions as normal stem cells. There are two models for tumor progression: clonal (stochastic) and cancer stem cell (CSCs) models. According to the first model, all transformed cells in the tumor have carcinogenic potential and are able to proliferate and produce the same cells. The latter model, which has received more attention recently, considers the role of CSCs in drug resistance and tumor metastasis. Following the model, researchers have found that targeting CSCs may be a promising way in cancer therapy. This review describes CSC characteristics in general, while also focusing on CSC properties in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Mehran Radak
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Talebi
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Mousavi
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
14
|
Tan Y, Li Y, Tang F. Nucleic Acid Aptamer: A Novel Potential Diagnostic and Therapeutic Tool for Leukemia. Onco Targets Ther 2019; 12:10597-10613. [PMID: 31824168 PMCID: PMC6900352 DOI: 10.2147/ott.s223946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/23/2022] Open
Abstract
Leukemia immunotherapy has been dominant via using synthetic antibodies to target cluster of differentiation (CD) molecules, nevertheless inevitable cytotoxicity and immunogenicity would limit its development. Recently, increasing reports have focused on nucleic acid aptamers, a class of high-affinity nucleic acid ligands. Aptamers purportedly serve as “chemical antibodies”, have negligible cytotoxicity and low immunogenicity, and would be widely applied for the therapy and diagnosis of various diseases, especially leukemia. In the preclinical applications, nucleic acid aptamers have displayed the augmented specificity and selectivity via recognizing targets on leukemia cells based on unique three-dimensional conformations. As small molecules with nucleic acid characteristics, aptamers need to be chemically modified to resist nuclease degradation, renal clearance and improve binding affinities. Moreover, aptamers can be linked with neoteric detection techniques to enhance sensitivity and selectivity of diagnosis and therapy. In this review, we summarized aptamers’ preparation, chemical modification and conjugation, and discussed the application of aptamers in diagnosis and treatment of leukemia through highly specifically recognizing target molecules. Significantly, the application prospect of aptamers in fusion genes would be introduced.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, People's Republic of China
| | - Yuejin Li
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, People's Republic of China
| | - Faqing Tang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, People's Republic of China
| |
Collapse
|
15
|
Fathi E, Sanaat Z, Farahzadi R. Mesenchymal stem cells in acute myeloid leukemia: a focus on mechanisms involved and therapeutic concepts. Blood Res 2019; 54:165-174. [PMID: 31730689 PMCID: PMC6779935 DOI: 10.5045/br.2019.54.3.165] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Drug resistance in cancer, especially in leukemia, creates a dilemma in treatment planning. Consequently, studies related to the mechanisms underlying drug resistance, the molecular pathways involved in this phenomenon, and alternate therapies have attracted the attention of researchers. Among a variety of therapeutic modalities, mesenchymal stem cells (MSCs) are of special interest due to their potential clinical use. Therapies involving MSCs are showing increasing promise in cancer treatment and anticancer drug screening applications; however, results have been inconclusive, possibly due to the heterogeneity of MSC populations. Most recently, the effect of MSCs on different types of cancer, such as hematologic malignancies, their mechanisms, sources of MSCs, and its advantages and disadvantages have been discussed. There are many proposed mechanisms describing the effects of MSCs in hematologic malignancies; however, the most commonly-accepted mechanism is that MSCs induce tumor cell cycle arrest. This review explains the anti-tumorigenic effects of MSCs through the suppression of tumor cell proliferation in hematological malignancies, especially in acute myeloid leukemia.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Le Naour A, Mevel R, Thibault B, Courtais E, Chantalat E, Delord JP, Couderc B, Guillermet-Guibert J, Martinez A. Effect of combined inhibition of p110 alpha PI3K isoform and STAT3 pathway in ovarian cancer platinum-based resistance. Oncotarget 2018; 9:27220-27232. [PMID: 29930760 PMCID: PMC6007481 DOI: 10.18632/oncotarget.25513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/07/2018] [Indexed: 12/13/2022] Open
Abstract
Background Ovarian cancer is associated with poor prognostic outcome due to late diagnosis and to intrinsic and acquired resistance to platinum-based chemotherapy in a large number of patients. This chemoresistance is acquired through the peritoneal and ascites microenvironment by several released factors, such as IL-6,. Preclinical studies have implicated the activation of PI3K pathway in chemoresistance, showing it to extend tumor cell survival and modulate multidrug resistance. We aimed to evaluate the implication of the p110 alpha PI3K subunit in ovarian cancer chemoresistance acquisition, and to evaluate whether the STAT3 pathway can mediate resistance to PI3K inhibitors through secretion of IL6. Results Human ovarian adenocarcinoma IGROV-1 and JHOC-5 cells cultured in ascites showed an increase in carboplatinum-based resistance. Level of chemoresistance was associated to IL6 concentration in ascites. Activation of PI3K/Akt, STAT and MAPK pathways was observed after IGROV-1 incubation with ascites and treatment with carboplatin. Neither IGROV-1 nor JHOC-5 cells exposed to ascites treated with additional IL-6 directed antibody showed any reversion of the chemoresistance. Conclusion IL6-related resistance was not abolished by the selective inhibition of PI3K alpha subunit coupled with the anti-IL6-receptor antibody tocilizumab. This dual inhibition requires further exploration in other ovarian cancer models such as clear cell carcinoma.
Collapse
Affiliation(s)
- Augustin Le Naour
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France
| | - Renaud Mevel
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France
| | - Benoit Thibault
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France
| | - Elise Courtais
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France
| | - Elodie Chantalat
- Department Surgical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Jean Pierre Delord
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France.,Department Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Bettina Couderc
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France.,Department Biology, Institut Claudius Regaud, Institut Universitaire du Cancer, Toulouse, France
| | - Julie Guillermet-Guibert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France.,Laboratoire d'excellence LABEX TouCAN, Toulouse, France
| | - Alejandra Martinez
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France.,Department Surgical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| |
Collapse
|
17
|
Goulard M, Dosquet C, Bonnet D. Role of the microenvironment in myeloid malignancies. Cell Mol Life Sci 2018; 75:1377-1391. [PMID: 29222645 PMCID: PMC5852194 DOI: 10.1007/s00018-017-2725-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
Abstract
The bone marrow microenvironment (BMM) regulates the fate of hematopoietic stem cells (HSCs) in homeostatic and pathologic conditions. In myeloid malignancies, new insights into the role of the BMM and its cellular and molecular actors in the progression of the diseases have started to emerge. In this review, we will focus on describing the major players of the HSC niche and the role of the altered niche function in myeloid malignancies, more specifically focusing on the mesenchymal stroma cell compartment.
Collapse
Affiliation(s)
- Marie Goulard
- INSERM, UMRS1131-Paris Diderot University, Saint Louis Hospital, Paris, France
| | - Christine Dosquet
- INSERM, UMRS1131-Paris Diderot University, Saint Louis Hospital, Paris, France
- Cell Biology Department, APHP, Saint Louis Hospital, Paris, France
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1, Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
18
|
Rahmani M, Nkwocha J, Hawkins E, Pei X, Parker RE, Kmieciak M, Leverson JD, Sampath D, Ferreira-Gonzalez A, Grant S. Cotargeting BCL-2 and PI3K Induces BAX-Dependent Mitochondrial Apoptosis in AML Cells. Cancer Res 2018; 78:3075-3086. [PMID: 29559471 DOI: 10.1158/0008-5472.can-17-3024] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/17/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
Inhibitors targeting BCL-2 apoptotic proteins have significant potential for the treatment of acute myeloid leukemia (AML); however, complete responses are observed in only 20% of patients, suggesting that targeting BCL-2 alone is insufficient to yield durable responses. Here, we assessed the efficacy of coadministration of the PI3K/mTOR inhibitor GDC-0980 or the p110β-sparing PI3K inhibitor taselisib with the selective BCL-2 antagonist venetoclax in AML cells. Tetracycline-inducible downregulation of BCL-2 significantly sensitized MV4-11 and MOLM-13 AML cells to PI3K inhibition. Venetoclax/GDC-0980 coadministration induced rapid and pronounced BAX mitochondrial translocation, cytochrome c release, and apoptosis in various AML cell lines in association with AKT/mTOR inactivation and MCL-1 downregulation; ectopic expression of MCL-1 significantly protected cells from this regimen. Combined treatment was also effective against primary AML blasts from 17 patients, including those bearing various genetic abnormalities. Venetoclax/GDC-0980 markedly induced apoptosis in primitive CD34+/38-/123+ AML cell populations but not in normal hematopoietic progenitor CD34+ cells. The regimen was also active against AML cells displaying intrinsic or acquired venetoclax resistance or tumor microenvironment-associated resistance. Either combinatorial treatment markedly reduced AML growth and prolonged survival in a systemic AML xenograft mouse model and diminished AML growth in two patient-derived xenograft models. Venetoclax/GDC-0980 activity was partially diminished in BAK-/- cells and failed to induce apoptosis in BAX-/- and BAX-/-BAK-/- cells, whereas BIM-/- cells were fully sensitive. Similar results were observed with venetoclax alone in in vitro and in vivo systemic xenograft models. Collectively, these studies demonstrate that venetoclax/GDC-0980 exhibits potent anti-AML activity primarily through BAX and, to a lesser extent, BAK. These findings argue that dual BCL-2 and PI3K inhibition warrants further evaluation in AML.Significance: Combined treatment with clinically relevant PI3K and BCL-2 inhibitors may prove effective in the treatment of acute myeloid leukemia. Cancer Res; 78(11); 3075-86. ©2018 AACR.
Collapse
Affiliation(s)
- Mohamed Rahmani
- Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Virginia. .,College of Medicine, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Jewel Nkwocha
- Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Virginia
| | - Elisa Hawkins
- Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Virginia
| | - Xinyan Pei
- Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Virginia
| | - Rebecca E Parker
- Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Virginia
| | - Maciej Kmieciak
- Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Virginia
| | | | | | - Andrea Ferreira-Gonzalez
- Department of Pathology, Virginia Commonwealth University and the Massey Cancer Center, Richmond, Virginia
| | - Steven Grant
- Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Virginia. .,Department of Biochemistry, Virginia Commonwealth University and the Massey Cancer Center, Richmond, Virginia.,Department of Pharmacology, Virginia Commonwealth University and the Massey Cancer Center, Richmond, Virginia.,Department of Human and Molecular Genetics, Virginia Commonwealth University, the Virginia Institute for Molecular Medicine and the Massey Cancer Center, Richmond, Virginia
| |
Collapse
|
19
|
PI3K/Akt inhibitor LY294002 potentiates homoharringtonine antimyeloma activity in myeloma cells adhered to stromal cells and in SCID mouse xenograft. Ann Hematol 2018; 97:865-875. [PMID: 29450644 DOI: 10.1007/s00277-018-3247-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/18/2018] [Indexed: 12/24/2022]
Abstract
Homoharringtonine (HHT) is a known anti-leukemia drug that inhibits multiple myeloma (MM) cells both in vitro and in vivo. Our prior study demonstrated that the potency of HHT in MM cells was compromised significantly when myeloma cells were co-cultured with BM stromal cells. This study aimed to investigate whether PI3K/Akt inhibitor LY294002 could potentiate the antimyeloma activity of HHT against MM cells adhered to BM stromal cells and in vivo xenograft models. A co-culture system composed of MM cells and human stromal cells was employed to mimic MM cells in bone marrow niche. The inhibitory and pro-apoptotic effect of HHT and LY294002 was determined by CCK-8 assay or flow cytometry. Expression of PI3K/Akt signaling molecules and anti-apoptotic protein myeloid cell leukemia-1 (Mcl-1) was assessed by western blot analysis and/or reverse transcription real-time quantitative PCR (RT-qPCR). MM xenografts were used to evaluate antitumor effect of combined therapy with HHT and LY294002. Adhesion to BM stromal cells rendered MM cells resistant to HHT whereas silencing Mcl-1 partly reversed the resistance. LY294002 induced apoptosis in MM cells and potentiated the antimyeloma effects of HHT by inhibiting the PI3K/Akt signal pathway which was abnormally activated during adhesion. LY294002 also enhanced the antimyeloma effect of HHT in in vivo xenograft models. These findings suggest that activation of PI3K/Akt signal pathway was responsible for the resistance to HHT in MM cells adhered to stromal cells. LY294002 can potentiate the antimyeloma activity of HHT both in vitro and in vivo, which may represent a new clinical treatment in MM.
Collapse
|
20
|
Abstract
Resistance to chemotherapy and cancer relapse are major clinical challenges attributed to a sub population of cancer stem cells (CSCs). The concept of CSCs has been the subject of intense research by the oncology community since evidence for their existence was first published over twenty years ago. Emerging data indicates that they are also able to evade novel therapies such as targeted agents, immunotherapies and anti-angiogenics. The inability to appropriately identify and isolate CSCs is a major hindrance to the field and novel technologies are now being utilized. Agents that target CSC-associated cell surface receptors and signaling pathways have generated promising pre-clinical results and are now entering clinical trial. Here we discuss and evaluate current therapeutic strategies to target CSCs.
Collapse
Affiliation(s)
- Stephanie Annett
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland
| | - Tracy Robson
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland.
| |
Collapse
|
21
|
Mesenchymal Stem Cells in Myeloid Malignancies: A Focus on Immune Escaping and Therapeutic Implications. Stem Cells Int 2017; 2017:6720594. [PMID: 28947904 PMCID: PMC5602646 DOI: 10.1155/2017/6720594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 01/07/2023] Open
Abstract
The importance of the bone marrow microenvironment forming the so-called niche in physiologic hemopoiesis is largely known, and recent evidences support the presence of stromal alterations from the molecular to the cytoarchitectural level in hematologic malignancies. Various alterations in cell adhesion, metabolism, cytokine signaling, autophagy, and methylation patterns of tumor-derived mesenchymal stem cells have been demonstrated, contributing to the genesis of a leukemic permissive niche. This niche allows both the ineffective haematopoiesis typical of myelodysplastic syndromes and the differentiation arrest, proliferation advantage, and clone selection which is the hallmark of acute myeloid leukemia. Furthermore, the immune system, both adaptive and innate, encompassing mesenchymal-derived cells, has been shown to take part to the leukemic niche. Here, we critically review the state of art about mesenchymal stem cell role in myelodysplastic syndromes and acute myeloid leukemia, focusing on immune escaping mechanisms as a target for available and future anticancer therapies.
Collapse
|
22
|
Chen P, Jin Q, Fu Q, You P, Jiang X, Yuan Q, Huang H. Induction of Multidrug Resistance of Acute Myeloid Leukemia Cells by Cocultured Stromal Cells via Upregulation of the PI3K/Akt Signaling Pathway. Oncol Res 2017; 24:215-23. [PMID: 27656831 PMCID: PMC7838662 DOI: 10.3727/096504016x14634208143021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This study aimed to investigate the role of the PI3K/Akt signaling pathway in multidrug resistance of acute myeloid leukemia (AML) cells induced by cocultured stromal cells. Human AML cell lines HL-60 and U937 were adhesion cocultured with human bone marrow stromal cell line HS-5 cells. Such coculturing induced HL-60 and U937 cells resistant to chemotherapeutic drugs including daunorubicin (DNR), homoharringtonine (HHT), and cytosine arabinoside (Ara-C). The coculturing-induced resistance of AML cells to DNR, HHT, and Ara-C can be partially reversed by inhibition of the PI3K/Akt signaling pathway. Clinically, AML patients with a low level of PTEN and a high level of CCND1 had high relapse rates within 1 year, and newly diagnosed AML patients with extramedullary infiltration had a low level of PTEN. This study confirms the involvement of the PI3K/Akt signaling pathway in multidrug resistance in AML cells induced by stroma and suggests that the expression of PTEN and CCND1 may be a prognostic indicator for AML.
Collapse
Affiliation(s)
- Ping Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fujian, P.R. China
| | | | | | | | | | | | | |
Collapse
|
23
|
Houshmand M, Soleimani M, Atashi A, Saglio G, Abdollahi M, Nikougoftar Zarif M. Mimicking the Acute Myeloid Leukemia Niche for Molecular Study and Drug Screening. Tissue Eng Part C Methods 2017; 23:72-85. [PMID: 28007011 DOI: 10.1089/ten.tec.2016.0404] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone marrow niche is a major contributing factor in leukemia development and drug resistance in acute myeloid leukemia (AML) patients. Although mimicking leukemic bone marrow niche relies on two-dimensional (2D) culture conditions, it cannot recapitulate complex bone marrow structure that causes introduction of different three-dimensional (3D) scaffolds. Simultaneously, microfluidic platform by perfusing medium culture mimic interstitial fluid flow, along with 3D scaffold would help for mimicking bone marrow microenvironment. In this study TF-1 cells were cocultured with bone marrow mesenchymal stem cells (BM-MSCs) in 2D and 3D microfluidic devices. Phenotype maintenance during cell culture and proliferation rate was assayed and confirmed by cell cycle analysis. Morphology of cells in 2D and 3D culture conditions was demonstrated by scanning electron microscopy. After these experiments, drug screening was performed by applying azacitidine and cytarabine and cytotoxicity assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for B cell lymphoma 2 (BCL2) were done to compare drug resistance in 2D and 3D culture conditions. Our result shows leukemic cells in 3D microfluidic device retaining their phenotype and proliferation rate was significantly higher in 3D culture condition in comparison to 2D culture condition (p < 0.05), which was confirmed by cell cycle analysis. Cytotoxicity assay also illustrated drug resistance in 3D culture condition and qRT-PCR demonstrated higher BCL2 expression in 3D microfluidic device in contrast to 2D microfluidic device (p < 0.05). On balance, mimicking bone marrow niche would help the target therapy and specify the role of niche in development of leukemia in AML patients.
Collapse
Affiliation(s)
- Mohammad Houshmand
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| | - Masoud Soleimani
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Amir Atashi
- 3 Stem cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences , Shahroud, Iran
| | - Giuseppe Saglio
- 4 Department of Clinical and Biological Sciences, "S. Luigi Gonzaga" Hospital, University of Turin , Orbassano, Italy
| | - Mohammad Abdollahi
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mahin Nikougoftar Zarif
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| |
Collapse
|
24
|
Ghosh J, Kapur R. Regulation of Hematopoietic Stem Cell Self-Renewal and Leukemia Maintenance by the PI3K-mTORC1 Pathway. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0067-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Ji N, Yu JW, Ni XC, Wu JG, Wang SL, Jiang BJ. Bone marrow-derived mesenchymal stem cells increase drug resistance in CD133-expressing gastric cancer cells by regulating the PI3K/AKT pathway. Tumour Biol 2016; 37:14637-14651. [DOI: 10.1007/s13277-016-5319-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/05/2016] [Indexed: 01/29/2023] Open
|
26
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
27
|
Cardoso BA, Belo H, Barata JT, Almeida AM. The Bone Marrow-Mediated Protection of Myeloproliferative Neoplastic Cells to Vorinostat and Ruxolitinib Relies on the Activation of JNK and PI3K Signalling Pathways. PLoS One 2015; 10:e0143897. [PMID: 26623653 PMCID: PMC4666616 DOI: 10.1371/journal.pone.0143897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/10/2015] [Indexed: 02/03/2023] Open
Abstract
The classical BCR-ABL-negative Myeloproliferative Neoplasms (MPN) are a group of heterogeneous haematological diseases characterized by constitutive JAK-STAT pathway activation. Targeted therapy with Ruxolitinib, a JAK1/2-specific inhibitor, achieves symptomatic improvement but does not eliminate the neoplastic clone. Similar effects are seen with histone deacetylase inhibitors (HDACi), albeit with poorer tolerance. Here, we show that bone marrow (BM) stromal cells (HS-5) protected MPN-derived cell lines (SET-2; HEL and UKE-1) and MPN patient-derived BM cells from the cytotoxic effects of Ruxolitinib and the HDACi Vorinostat. This protective effect was mediated, at least in part, by the secretion of soluble factors from the BM stroma. In addition, it correlated with the activation of signalling pathways important for cellular homeostasis, such as JAK-STAT, PI3K, JNK, MEK-ERK and NF-κB. Importantly, the pharmacological inhibition of JNK and PI3K pathways completely abrogated the BM protective effect on MPN cell lines and MPN patient samples. Our findings shed light on mechanisms of tumour survival and may indicate novel therapeutic approaches for the treatment of MPN.
Collapse
Affiliation(s)
- Bruno A. Cardoso
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa—Francisco Gentil, E.P.E., Lisbon, Portugal
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Hélio Belo
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa—Francisco Gentil, E.P.E., Lisbon, Portugal
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João T. Barata
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - António M. Almeida
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa—Francisco Gentil, E.P.E., Lisbon, Portugal
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- * E-mail:
| |
Collapse
|