1
|
Arsenic Induces Continuous Inflammation and Regulates Th1/Th2/Th17/Treg Balance in Liver and Kidney In Vivo. Mediators Inflamm 2022; 2022:8414047. [PMID: 35210942 PMCID: PMC8863494 DOI: 10.1155/2022/8414047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 12/26/2022] Open
Abstract
Numerous studies on arsenic-induced hepatonephric toxicity including cancer have been reported. Given that chronic inflammatory response and immune imbalance are associated with oncogenesis, we investigated whether arsenic could influence the hepatic and nephritic expression of inflammatory factors and the differentiation of T cells. Mice were exposed to NaAsO2 (0, 25, and 50 mg/L) for 1 and 3 months. Our data showed the destruction of the structure and inflammatory infiltration in the liver. The arsenic markedly increased the activity of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The myeloperoxidase (MPO) activities increased in the liver at 25 and 50 mg/L arsenic for 3 months as well as in the kidney at both 1 and 3 months. An increased expression of inflammatory indicators (IL-1β, IL-12, and TNF-α) at 25 and 50 mg/L arsenic for 1 and 3 months in the liver and kidney, as well as IL-1β in the liver for 3 months and in the kidney at 50 mg/L for 1 and 3 months were demonstrated in our experiments. Besides, a definite tendency toward Th1/Th17 cytokines in the liver while Th2/Th17 cytokines in kidney was also observed by arsenic. Moreover, arsenic enhanced the expression of MAPK/Nrf2/NF-κB signaling molecules. In conclusion, the results of the study suggested that arsenic induces continuous immune-inflammatory responses in the liver and kidney.
Collapse
|
2
|
Wu L, Li X, Wei S, Hu T, Wu C, Jian W, Luo P. Relationship between p38 signaling pathway and arsenic-induced apoptosis: a meta-analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1213-1224. [PMID: 32621277 DOI: 10.1007/s10653-020-00646-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Arsenic exposure could induce apoptosis and cause related cancer. It was reported that p38 signaling pathway played a key transcriptional regulatory factor in arsenic-induced apoptosis. However, there were certain disputable questions about this point of opinion. Therefore, the relationship between p38 signaling pathway and arsenic-induced apoptosis was systematically reviewed and analyzed by meta-analysis. Twelve essays were analyzed with StataSE15.0 and Review Manager 5.3. The regulatory variables, such as normal cells and cancer cells, arsenic exposure time and exposure dose were analyzed by the subgroup analysis. The comprehensive effects were compared and analyzed by SMD method. Publication bias, the monolithic impact and heterogeneity were inspected. Subgroup analysis showed, when arsenic exposure was ≥ 5 μmol/l, the expression of Bcl-2 and Bax was down-regulated and the expression of p38 and Caspase-3 was up-regulated. When arsenic exposure was < 5 μmol/l, the expression of Bcl-2, Bax, p38 and Caspase-3 was up-regulated. Arsenic exposure time (≥ 48 h) or arsenic exposure dose (≥ 5 μmol/l or < 5 μmol/l) can promote the expression of p38. Arsenic exposure time was ≥ 48 h or exposure dose was < 5 μmol/l in cancer cells, arsenic exposure dose was ≥ 5 μmol/l or exposure time was < 48 h in normal cells, and they are statistically significant in the expression of p38. This study evaluates the role of p38 signaling pathway in arsenic-induced apoptosis, which is helpful to provide theoretical basis for the differentiation of arsenic-induced injury and the therapeutic mechanism of arsenic-induced apoptosis.
Collapse
Affiliation(s)
- Liping Wu
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Town of University, Guian New District, Guiyang, 550025, People's Republic of China
| | - Xi Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Town of University, Guian New District, Guiyang, 550025, People's Republic of China
| | - Shaofeng Wei
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Town of University, Guian New District, Guiyang, 550025, People's Republic of China
| | - Ting Hu
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Town of University, Guian New District, Guiyang, 550025, People's Republic of China
| | - Changyan Wu
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Town of University, Guian New District, Guiyang, 550025, People's Republic of China
| | - Wen Jian
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Town of University, Guian New District, Guiyang, 550025, People's Republic of China
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Town of University, Guian New District, Guiyang, 550025, People's Republic of China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China.
| |
Collapse
|
3
|
Barguilla I, Bach J, Peremartí J, Marcos R, Hernández A. FRA1 is essential for the maintenance of the oncogenic phenotype induced by in vitro long-term arsenic exposure. Metallomics 2020; 12:2161-2173. [PMID: 33313624 DOI: 10.1039/d0mt00209g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arsenic induces oncogenic effects activating stress-related signalling pathways. This can result in the over-activation of the AP-1 protein, specifically its FRA1 component. FRA1 is a transcription factor frequently overexpressed in epithelial tumors, where it can regulate the expression of different target genes. Accordingly, FRA1 could play an essential role in the in vitro cell transformation induced by arsenic. FRA1 levels were monitored in MEF cells throughout their transformation stages during 40 weeks of long-term 2 μM arsenic exposure. Interestingly, the results show a progressive FRA1 overexpression with time (60-fold and 11-fold for mRNA and pFRA/non-pFRA1, respectively, at week 40), which may be responsible for the observed altered expression in the FRA1 downstream target genes Pten, Pdcd4, Tpm1, Tgfb1, Tgfb2, Zeb1, Zeb2, and Twist. The levels of MAPKs (ERK, p38, and JNK) and other known players upstream from FRA1 were assessed at equivalent time-points, and ERK, p38 and RAS were pinpointed as potential candidates involved in arsenic-induced FRA1 activation. Furthermore, FRA1 stable knockdown under chronic arsenic exposure settings elicits a remarkable impact on the features relative to the cells' oncogenic phenotype. Notably, FRA1 knockdown cells present a 30% diminished proliferation rate, a 50% lowered migration and invasion potential, a 50% reduction in senescence, and a 30-60% reduced tumorsphere-forming ability. This work is the first to demonstrate the important role of FRA1 in the development and aggressiveness of the in vitro transformed phenotype induced by long-term arsenic exposure.
Collapse
Affiliation(s)
- Irene Barguilla
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Edifici Cn, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | | | | | | | | |
Collapse
|
4
|
A Systematic Review of the Various Effect of Arsenic on Glutathione Synthesis In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9414196. [PMID: 32802886 PMCID: PMC7411465 DOI: 10.1155/2020/9414196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Background Arsenic is a toxic metalloid widely present in nature, and arsenic poisoning in drinking water is a serious global public problem. Glutathione is an important reducing agent that inhibits arsenic-induced oxidative stress and participates in arsenic methylation metabolism. Therefore, glutathione plays an important role in regulating arsenic toxicity. In recent years, a large number of studies have shown that arsenic can regulate glutathione synthesis in many ways, but there are many contradictions in the research results. At present, the mechanism of the effect of arsenic on glutathione synthesis has not been elucidated. Objective We will conduct a meta-analysis to illustrate the effects of arsenic on GSH synthesis precursors Glu, Cys, Gly, and rate-limiting enzyme γ-GCS in mammalian models, as well as the regulation of p38/Nrf2 of γ-GCS subunit GCLC, and further explore the molecular mechanism of arsenic affecting glutathione synthesis. Results This meta-analysis included 30 studies in vivo and 58 studies in vitro, among which in vivo studies showed that arsenic exposure could reduce the contents of GSH (SMD = -2.86, 95% CI (-4.45, -1.27)), Glu (SMD = -1.11, 95% CI (-2.20,-0.02)), and Cys (SMD = -1.48, 95% CI (-2.63, -0.33)), with no statistically significant difference in p38/Nrf2, GCLC, and GCLM. In vitro studies showed that arsenic exposure increased intracellular GSH content (SMD = 1.87, 95% CI (0.18, 3.56)) and promoted the expression of p-p38 (SMD = 4.19, 95% CI (2.34, 6.05)), Nrf2 (SMD = 4.60, 95% CI (2.34, 6.86)), and GCLC (SMD = 1.32, 95% CI (0.23, 2.41)); the p38 inhibitor inhibited the expression of Nrf2 (SMD = -1.27, 95% CI (-2.46, -0.09)) and GCLC (SMD = -5.37, 95% CI (-5.37, -2.20)); siNrf2 inhibited the expression of GCLC, and BSO inhibited the synthesis of GSH. There is a dose-dependent relationship between the effects of exposure on GSH in vitro. Conclusions. These indicate the difference between in vivo and in vitro studies of the effect of arsenic on glutathione synthesis. In vivo studies have shown that arsenic exposure can reduce glutamate and cysteine levels and inhibit glutathione synthesis, while in vitro studies have shown that chronic low-dose arsenic exposure can activate the p38/Nrf2 pathway, upregulate GCLC expression, and promote glutathione synthesis.
Collapse
|
5
|
Sharma P, Caldwell TS, Rivera MN, Gullapalli RR. Cadmium exposure activates Akt/ERK Signaling and pro-inflammatory COX-2 expression in human gallbladder epithelial cells via a ROS dependent mechanism. Toxicol In Vitro 2020; 67:104912. [PMID: 32512147 DOI: 10.1016/j.tiv.2020.104912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Gallbladder cancer (GBC) is the commonest biliary tract cancer with an ill-defined etiology. We examined the role of Cd+2 exposures in a primary human gallbladder (GB) cell line model in this study. Cd+2 exposures induced decreased cell viability, reactive oxygen species (ROS) generation, altered Akt/ERK signaling pathway activation, PGE2 and COX-2 expression in a human primary gallbladder epithelial cell model. Pharmacological inhibitors were used to determine the key drivers of elevated COX-2 expression due to Cd+2 exposure. Our results show Cd+2 causes a dose-dependent reduction in GB cell viability (EC50 value - 18.6 μM). Dose-dependent activation of phospho-Akt and phospho-ERK signaling pathways via increased phosphoprotein expression was observed due to Cd+2. Signaling activation of Akt and ERK was prevented by 5 mM N-Acetyl Cysteine (NAC), establishing the role of ROS as a key driver in the activation process. Importantly, we observed Cd+2 also caused a dose dependent change in the COX-2 and PGE2 expression levels. PI3K-Akt and NF-kB signaling pathways play a key role in Cd+2 exposure induced COX-2 activation in the gallbladder epithelial cells. In conclusion, our study measures the toxicological effects of Cd+2 exposures on human GB epithelial cells for the first time and establishes the role of Cd+2 as a possible driver of the Akt/ERK pathway overactivity and chronic inflammation in gallbladder carcinogenesis.
Collapse
Affiliation(s)
- Priyanka Sharma
- University of New Mexico, Department of Pathology Albuquerque, NM, USA
| | - Trevar S Caldwell
- University of New Mexico, Department of Pathology Albuquerque, NM, USA
| | - Megan N Rivera
- University of New Mexico, Department of Pathology Albuquerque, NM, USA
| | - Rama R Gullapalli
- University of New Mexico, Department of Pathology Albuquerque, NM, USA; University of New Mexico, Department of Chemical and Biological Engineering Albuquerque, NM, USA.
| |
Collapse
|
6
|
The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules 2020; 10:biom10020240. [PMID: 32033297 PMCID: PMC7072296 DOI: 10.3390/biom10020240] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
Collapse
|
7
|
Jin X, Mo Q, Zhang Y, Gao Y, Wu Y, Li J, Hao X, Ma D, Gao Q, Chen P. The p38 MAPK inhibitor BIRB796 enhances the antitumor effects of VX680 in cervical cancer. Cancer Biol Ther 2017; 17:566-76. [PMID: 27082306 DOI: 10.1080/15384047.2016.1177676] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
VX680 is a potent and selective inhibitor that targets the Aurora kinase family. The p38 mitogen-activated protein kinase (MAPK) regulates a large number of cellular pathways and plays an important role in the regulation of cell survival and apoptosis. This study aimed to evaluate the effect of VX680 on cervical cancer cells and investigate whether the effects on apoptosis are enhanced by the ablation of p38 MAPK activation. The results suggested that VX680 inhibited the proliferation of cervical cancer cells by causing G2/M phase arrest and endoreduplication and that the apoptotic effect was attenuated by the activation of p38 MAPK. However, the addition of BIRB796, which is an important p38 MAPK inhibitor, effectively eliminated the expression of p-p38 and hence significantly enhanced the cell death induced by VX680 in vitro. Further study demonstrated that BIRB796 cooperated with VX680 to suppress cervical cancer cell growth in a mouse xenograft model. Taken together, our results demonstrated that VX680 induced cell cycle arrest and endoreduplication in human cervical cancer cells. Combined treatment with VX680 and BIRB796 synergistically inhibited tumor growth both in vitro and in vivo. Dual blockade of Aurora kinases and p38 MAPK is therefore a promising strategy for cervical cancer treatment.
Collapse
Affiliation(s)
- Xin Jin
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Qingqing Mo
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Yu Zhang
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Yue Gao
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Yuan Wu
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Jing Li
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Xing Hao
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Ding Ma
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Qinglei Gao
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Pingbo Chen
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| |
Collapse
|
8
|
Eckstein M, Eleazer R, Rea M, Fondufe-Mittendorf Y. Epigenomic reprogramming in inorganic arsenic-mediated gene expression patterns during carcinogenesis. REVIEWS ON ENVIRONMENTAL HEALTH 2017; 32:93-103. [PMID: 27701139 DOI: 10.1515/reveh-2016-0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 05/22/2023]
Abstract
Arsenic is a ubiquitous metalloid that is not mutagenic but is carcinogenic. The mechanism(s) by which arsenic causes cancer remain unknown. To date, several mechanisms have been proposed, including the arsenic-induced generation of reactive oxygen species (ROS). However, it is also becoming evident that inorganic arsenic (iAs) may exert its carcinogenic effects by changing the epigenome, and thereby modifying chromatin structure and dynamics. These epigenetic changes alter the accessibility of gene regulatory factors to DNA, resulting in specific changes in gene expression both at the levels of transcription initiation and gene splicing. In this review, we discuss recent literature reports describing epigenetic changes induced by iAs exposure and the possible epigenetic mechanisms underlying these changes.
Collapse
|
9
|
Mo Q, Zhang Y, Jin X, Gao Y, Wu Y, Hao X, Gao Q, Chen P. Geldanamycin, an inhibitor of Hsp90, increases paclitaxel-mediated toxicity in ovarian cancer cells through sustained activation of the p38/H2AX axis. Tumour Biol 2016; 37:14745-14755. [PMID: 27629142 DOI: 10.1007/s13277-016-5297-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
Paclitaxel is a mitotic inhibitor used in ovarian cancer chemotherapy. Unfortunately, due to the rapid genetic and epigenetic changes in adaptation to stress induced by anticancer drugs, cancer cells are often able to become resistant to single or multiple anticancer agents. However, it remains largely unknown how paclitaxel resistance happens. In this study, we generated a cell line of acquired resistance to paclitaxel therapy, A2780T, which is cross-resistant to other antimitotic drugs, such as PLK1 inhibitor or AURKA inhibitor. Immunoblotting revealed significant alterations in cell-cycle-related and apoptotic-related proteins involved in key signaling pathways. In particular, phosphorylation of p38, which activates H2AX, was significantly decreased in A2780T cells compared to the parental A2780 cells. Geldanamycin (GA), an inhibitor of Hsp90, sustained activation of the p38/H2AX axis, and A2780T cells were shown to be more sensitive to GA compared to A2780 cells. Furthermore, treatment of A2780 and A2780T cells with GA significantly enhanced sensitivity to paclitaxel. Meanwhile, GA cooperated with paclitaxel to suppress tumor growth in a mouse ovarian cancer xenograft model. In conclusion, GA may sensitize a subset of ovarian cancer to paclitaxel, particularly those tumors in which resistance is driven by inactivation of p38/H2AX axis.
Collapse
Affiliation(s)
- Qingqing Mo
- Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yu Zhang
- Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin Jin
- Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yue Gao
- Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuan Wu
- Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Hao
- Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qinglei Gao
- Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Pingbo Chen
- Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|