1
|
Dzhalilova D, Zolotova N, Fokichev N, Makarova O. Murine models of colorectal cancer: the azoxymethane (AOM)/dextran sulfate sodium (DSS) model of colitis-associated cancer. PeerJ 2023; 11:e16159. [PMID: 37927787 PMCID: PMC10624171 DOI: 10.7717/peerj.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/31/2023] [Indexed: 11/07/2023] Open
Abstract
Background Colorectal cancer (CRC) is the third most common cancer. It is a heterogeneous disease, including both hereditary and sporadic types of tumors. CRC results from complex interactions between various genetic and environmental factors. Inflammatory bowel disease is an important risk factor for developing CRC. Despite growing understanding of the CRC biology, preclinical models are still needed to investigate the etiology and pathogenesis of the disease, as well as to find new methods of treatment and prevention. Objectives The purpose of this review is to describe existing murine models of CRC with a focus on the models of colitis-associated CRC. This manuscript could be relevant for experimental biologists and oncologists. Methodology We checked PubMed and Google from 01/2018 to 05/2023 for reviews of CRC models. In addition, we searched PubMed from 01/2022 to 01/2023 for articles using the azoxymethane (AOM)/dextran sulfate sodium (DSS) CRC model. Results Existing murine models of CRC include spontaneous, genetically engineered, transplantation, and chemically induced models. For the study of colitis-associated cancer (CAC), the AOM/DSS model is predominantly used. This model is very similar in histological and molecular characteristics to the human CAC, and is highly reproducible, inexpensive, and easy to use. Despite its popularity, the AOM/DSS model is not standardized, which makes it difficult to analyze and compare data from different studies. Conclusions Each model demonstrates particular advantages and disadvantages, and allows to reproduce different subtypes or aspects of the pathogenesis of CRC.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Natalia Zolotova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Nikolai Fokichev
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| |
Collapse
|
2
|
T-Cell-Specific CerS4 Depletion Prolonged Inflammation and Enhanced Tumor Burden in the AOM/DSS-Induced CAC Model. Int J Mol Sci 2022; 23:ijms23031866. [PMID: 35163788 PMCID: PMC8837088 DOI: 10.3390/ijms23031866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
To better understand the role of sphingolipids in the multifactorial process of inflammatory bowel disease (IBD), we elucidated the role of CerS4 in colitis and colitis-associated cancer (CAC). For this, we utilized the azoxymethane/dextran sodium sulphate (AOM/DSS)-induced colitis model in global CerS4 knockout (CerS4 KO), intestinal epithelial (CerS4 Vil/Cre), or T-cell restricted knockout (CerS4 LCK/Cre) mice. CerS4 KO mice were highly sensitive to the toxic effect of AOM/DSS, leading to a high mortality rate. CerS4 Vil/Cre mice had smaller tumors than WT mice. In contrast, CerS4 LCK/Cre mice frequently suffered from pancolitis and developed more colon tumors. In vitro, CerS4-depleted CD8+ T-cells isolated from the thymi of CerS4 LCK/Cre mice showed impaired proliferation and prolonged cytokine production after stimulation in comparison with T-cells from WT mice. Depletion of CerS4 in human Jurkat T-cells led to a constitutively activated T-cell receptor and NF-κB signaling pathway. In conclusion, the deficiency of CerS4 in T-cells led to an enduring active status of these cells and prevents the resolution of inflammation, leading to a higher tumor burden in the CAC mouse model. In contrast, CerS4 deficiency in epithelial cells resulted in smaller colon tumors and seemed to be beneficial. The higher tumor incidence in CerS4 LCK/Cre mice and the toxic effect of AOM/DSS in CerS4 KO mice exhibited the importance of CerS4 in other tissues and revealed the complexity of general targeting CerS4.
Collapse
|
3
|
Loss of Stat6 affects chromatin condensation in intestinal epithelial cells causing diverse outcome in murine models of inflammation-associated and sporadic colon carcinogenesis. Oncogene 2018; 38:1787-1801. [PMID: 30353167 PMCID: PMC6756235 DOI: 10.1038/s41388-018-0551-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/16/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
While great advances have been achieved regarding the genetic basis of colorectal cancer, the complex role of cell–cell communication and cytokine-induced signaling during its pathogenesis remains less understood. Signal transducer and activator of transcription 6 (Stat6) is the main transcription factor of interleukin-4 (IL-4) signaling and its participation in the development of various tumor types has been already reported. Here we aimed to examine the contribution of Stat6 in intestinal epithelial cells (IEC) in mouse models of intestinal carcinogenesis. Wild-type (WT), Stat6 knockout (Stat6−/−), and intestinal epithelial cell-specific IL-4Rα knockout (Il-4rαΔIEC) mice were subjected to colitis-associated (AOM/DSS) and colitis-independent (sporadic) carcinogenesis. IEC proliferation, apoptosis and RNA expression were evaluated by immunohistochemical, immunoblot, and RT-PCR analysis. We found that Stat6−/− mice developed more tumors in the colitis-associated carcinogenesis model. This was accompanied by a more pronounced inflammatory response during colitis and an elevated Stat3-dependent proliferation of IEC. Increased sensitivity to DSS-induced colitis was caused by elevated cell death in response to the initial carcinogen exposure as Stat6 deficiency led to increased chromatin compaction affecting DNA damage response in IEC upon treatment with alkylating agents independently of IL-4Rα engagement. Thus, loss of Stat6 caused more severe colitis and increased tumor load, however loss-of-initiated Stat6−/− IEC prevented tumor formation in the absence of overt inflammation. Our data unravel unexpected IL-4-independent functions of Stat6 in chromatin compaction in intestinal epithelial cells ultimately providing both tumor suppressive as well as tumor promoting effects in different models of intestinal tumorigenesis.
Collapse
|
4
|
Angriman I, Furian L, Scarpa M, Fassan M, Morgan S, Porzionato A, Kotsafti A, Saadeh L, Silvestre C, De Caro R, Carraro A, Tedeschi U, Bardini R, Rigotti P, Rugge M, Castoro C, Castagliuolo I, Scarpa M. Effects of immune suppression for transplantation on inflammatory colorectal cancer progression. Oncogenesis 2018; 7:46. [PMID: 29915171 PMCID: PMC6006312 DOI: 10.1038/s41389-018-0055-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 04/10/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022] Open
Abstract
Background Ulcerative colitis patients and transplant recipients are at risk for colorectal cancer. Here, we show that immunosuppressive regimens for kidney transplants are associated with the progression of ulcerative colitis-related carcinogenesis. Methods We describe the case of a patient diagnosed with colorectal cancer in ulcerative colitis while on immunosuppressive therapy for a kidney transplant. The immunological microenvironment of the cancer and its mutational status were analyzed, and a mouse colon cancer model was created to replicate the unique clinical conditions. AOM/DSS mice were randomized into seven experimental groups that received different immunosuppressants and an untreated control group to assess the frequencies of adenocarcinoma and high-grade dysplasia. Histopathology, immunohistochemistry, and flow cytometry were also performed on the harvested mouse colons. Results All mice treated with an immunosuppressive regimen developed at least an adenoma, and several of those receiving anti-CD3, anti-CD8, and mycophenolate mofetil also developed adenocarcinomas. In contrast, mice receiving rapamycin did not develop adenocarcinomas, and the extent of high-grade dysplasia in those mice was similar to that in control mice. Conclusions Patients with pre-neoplastic conditions, such as ulcerative colitis, who are undergoing a solid organ transplant might benefit from the use of mTOR inhibitors given their intrinsic anti-tumor properties. Among transplant recipients, colorectal cancer is more aggressive. This report highlights the association between immunosuppression and the disruption of the immune surveillance mechanisms against colorectal cancer.
Collapse
Affiliation(s)
- Imerio Angriman
- General Surgery Unit, University Hospital of Padua, Padua, Italy
| | - Lucrezia Furian
- Kidney Transplant Unit, University Hospital of Padua, Padua, Italy
| | - Melania Scarpa
- Esophageal and Digestive Tract Surgical Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine DIMED, University Hospital of Padua, Padua, Italy
| | - Susan Morgan
- Pathology Unit, Sheffield Teaching Hospitals, Sheffield, UK
| | - Andrea Porzionato
- Department of Neurosciences, University Hospital of Padua, Padua, Italy
| | - Andromachi Kotsafti
- Esophageal and Digestive Tract Surgical Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Luca Saadeh
- General Surgery Unit, University Hospital of Padua, Padua, Italy
| | | | - Raffaele De Caro
- Department of Neurosciences, University Hospital of Padua, Padua, Italy
| | - Amedeo Carraro
- Department of Surgery, University Hospital of Verona, Verona, Italy
| | - Umberto Tedeschi
- Department of Surgery, University Hospital of Verona, Verona, Italy
| | - Romeo Bardini
- General Surgery Unit, University Hospital of Padua, Padua, Italy
| | - Paolo Rigotti
- Kidney Transplant Unit, University Hospital of Padua, Padua, Italy
| | - Massimo Rugge
- Surgical Pathology Unit, Department of Medicine DIMED, University Hospital of Padua, Padua, Italy
| | - Carlo Castoro
- Upper GI Surgery Unit, Humanitas Research Hospital, Milan, Italy
| | | | - Marco Scarpa
- Esophageal and Digestive Tract Surgical Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
5
|
1-Deoxynojirimycin from Bacillus subtilis improves antioxidant and antibacterial activities of juvenile Yoshitomi tilapia. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Yang D, Zhang M, Gold B. Origin of Somatic Mutations in β-Catenin versus Adenomatous Polyposis Coli in Colon Cancer: Random Mutagenesis in Animal Models versus Nonrandom Mutagenesis in Humans. Chem Res Toxicol 2017; 30:1369-1375. [DOI: 10.1021/acs.chemrestox.7b00092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Da Yang
- Department of Pharmaceutical
Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Min Zhang
- Department of Pharmaceutical
Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Barry Gold
- Department of Pharmaceutical
Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
7
|
Gold B. Somatic mutations in cancer: Stochastic versus predictable. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 814:37-46. [PMID: 28137366 DOI: 10.1016/j.mrgentox.2016.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
Abstract
The origins of human cancers remain unclear except for a limited number of potent environmental mutagens, such as tobacco and UV light, and in rare cases, familial germ line mutations that affect tumor suppressor genes or oncogenes. A significant component of cancer etiology has been deemed stochastic and correlated with the number of stem cells in a tissue, the number of times the stem cells divide and a low incidence of random DNA polymerase errors that occur during each cell division. While somatic mutations occur during each round of DNA replication, mutations in cancer driver genes are not stochastic. Out of a total of 2843 codons, 1031 can be changed to stop codons by a single base substitution in the tumor suppressor APC gene, which is mutated in 76% of colorectal cancers (CRC). However, the nonsense mutations, which comprise 65% of all the APC driver mutations in CRC, are not random: 43% occur at Arg CGA codons, although they represent <3% of the codons. In TP53, CGA codons comprise <3% of the total 393 codons but they account for 72% and 39% of the mutations in CRC and ovarian cancer OVC, respectively. This mutation pattern is consistent with the kinetically slow, but not stochastic, hydrolytic deamination of 5-methylcytosine residues at specific methylated CpG sites to afford T·G mismatches that lead to C→T transitions and stop codons at CGA. Analysis of nonsense mutations in CRC, OVC and a number of other cancers indicates the need to expand the predictable risk factors for cancer to include, in addition to random polymerase errors, the methylation status of gene body CGA codons in tumor suppressor genes.
Collapse
Affiliation(s)
- Barry Gold
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
8
|
Abstract
Fundamental cancer research and the development of efficacious antineoplastic treatments both rely on experimental systems in which the relationship between malignant cells and immune cells can be studied. Mouse models of transplantable, carcinogen-induced or genetically engineered malignancies - each with their specific advantages and difficulties - have laid the foundations of oncoimmunology. These models have guided the immunosurveillance theory that postulates that evasion from immune control is an essential feature of cancer, the concept that the long-term effects of conventional cancer treatments mostly rely on the reinstatement of anticancer immune responses and the preclinical development of immunotherapies, including currently approved immune checkpoint blockers. Specific aspects of pharmacological development, as well as attempts to personalize cancer treatments using patient-derived xenografts, require the development of mouse models in which murine genes and cells are replaced with their human equivalents. Such 'humanized' mouse models are being progressively refined to characterize the leukocyte subpopulations that belong to the innate and acquired arms of the immune system as they infiltrate human cancers that are subjected to experimental therapies. We surmise that the ever-advancing refinement of murine preclinical models will accelerate the pace of therapeutic optimization in patients.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), INSERM U1015, 114 rue Edouard Vaillant, 94805 Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer, CICBT1428, GRCC, 94805 Villejuif, France
| | - Jonathan M Pitt
- Gustave Roussy Cancer Campus (GRCC), INSERM U1015, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Romain Daillère
- Gustave Roussy Cancer Campus (GRCC), INSERM U1015, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; University of Queensland, Herston, QLD, Australia
| | - Guido Kroemer
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
- University of Pierre et Marie Curie, 75006 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, 75015 Paris, France
- Metabolomics and Cell Biology Platforms, GRCC, 94805 Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
9
|
Gerling M, Büller NVJA, Kirn LM, Joost S, Frings O, Englert B, Bergström Å, Kuiper RV, Blaas L, Wielenga MCB, Almer S, Kühl AA, Fredlund E, van den Brink GR, Toftgård R. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun 2016; 7:12321. [PMID: 27492255 PMCID: PMC4980446 DOI: 10.1038/ncomms12321] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/21/2016] [Indexed: 01/07/2023] Open
Abstract
A role for Hedgehog (Hh) signalling in the development of colorectal cancer (CRC) has been proposed. In CRC and other solid tumours, Hh ligands are upregulated; however, a specific Hh antagonist provided no benefit in a clinical trial. Here we use Hh reporter mice to show that downstream Hh activity is unexpectedly diminished in a mouse model of colitis-associated colon cancer, and that downstream Hh signalling is restricted to the stroma. Functionally, stroma-specific Hh activation in mice markedly reduces the tumour load and blocks progression of advanced neoplasms, partly via the modulation of BMP signalling and restriction of the colonic stem cell signature. By contrast, attenuated Hh signalling accelerates colonic tumourigenesis. In human CRC, downstream Hh activity is similarly reduced and canonical Hh signalling remains predominantly paracrine. Our results suggest that diminished downstream Hh signalling enhances CRC development, and that stromal Hh activation can act as a colonic tumour suppressor. The Hedgehog signalling pathway can drive tumorigenesis. Here, the authors show that in a colitis-associated colon cancer model downstream Hedgehog signalling is restricted to the stroma and its over-activation can inhibit tumorigenesis, associated with activation of BMP signaling.
Collapse
Affiliation(s)
- Marco Gerling
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden
| | - Nikè V J A Büller
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 69-71, AZ1105 Amsterdam, The Netherlands
| | - Leonard M Kirn
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden.,Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Simon Joost
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden
| | - Oliver Frings
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Benjamin Englert
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden.,Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Åsa Bergström
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden
| | - Raoul V Kuiper
- Core Facility for Morphologic Phenotype Analysis, Clinical Research Center, Karolinska Institutet, Hälsovägen 7-9, 14183 Huddinge, Sweden
| | - Leander Blaas
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden
| | - Mattheus C B Wielenga
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 69-71, AZ1105 Amsterdam, The Netherlands
| | - Sven Almer
- Department of Medicine, Solna, Karolinska Institutet, 17176 Stockholm, Sweden.,Center for Digestive Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Erik Fredlund
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Gijs R van den Brink
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 69-71, AZ1105 Amsterdam, The Netherlands
| | - Rune Toftgård
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7, 14183 Huddinge, Sweden
| |
Collapse
|