1
|
Liu Y, Xiao X, Wang J, Wang Y, Yu Y. Silencing CircEIF3I/miR-526b-5p Axis Epigenetically Targets HGF/c-Met Signal to Hinder the Malignant Growth, Metastasis and Angiogenesis of Hepatocellular Carcinoma. Biochem Genet 2023; 61:48-68. [PMID: 35723810 DOI: 10.1007/s10528-022-10239-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/25/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition factor (c-Met) is important for the diagnosis and prognosis of hepatocellular carcinoma (HCC). Circular RNAs (circRNAs) are key regulators of HCC progression, and this study focused on circRNA eukaryotic translation initiation factor 3 subunit I (circEIF3I) with HGF/c-Met in HCC. METHODS Levels of circEIF3I, microRNA (miR)-526b-5p, HGF, E-cadherin, N-cadherin, and Vimentin were detected by Gene Expression Omnibus database, quantitative PCR and western blotting. Cell functions were measured by detecting cell growth (cell proliferation assay with WST-1 and EdU, colony formation assay, flow cytometry, caspase 3 activity assay, and nude mouse tumorigenicity assay), metastasis (transwell assay and western blotting), angiogenesis (endothelial tube formation assay). Molecular interaction was determined dual-luciferase reporter assay, RNA immunoprecipitation, and Pearson correlation analysis. RESULTS Expression of circEIF3I was upregulated in HCC tissues. Knockdown of circEIF3I suppressed cell proliferation epithelial-mesenchymal transition, migration, invasion and tube formation ability but promoted apoptosis of HCC cells. CircEIF3I could sponge miR-526b-5pto regulate downstream HGF. Functionally, circEIF3I regulation in HCC cell progression was associated with miR-526b-5p sponging function and HGF upregulation could attenuate tumor-inhibiting roles of miR-526b-5p. HCC tumor growth was delayed by interfering circEIF3I. CONCLUSION CircEIF3I was an oncogenic circRNA in HCC-, and interfering circEIF3I exhibited anti-HCC activity via circEIF3I-miR-526b-5p-HGF/c-Met pathway.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiological, The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Xia Xiao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130001, Jilin Province, China
| | - Jingying Wang
- Department of Laboratory, China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Yitong Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130001, Jilin Province, China
| | - Yanhui Yu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130001, Jilin Province, China.
| |
Collapse
|
2
|
Li J, Zhou H, Wei B, Che D, Xu Y, Pi L, Fu L, Hong J, Gu X. The rs8506 TT Genotype in lincRNA-NR_024015 Contributes to the Risk of Sepsis in a Southern Chinese Child Population. Front Public Health 2022; 10:927527. [PMID: 35910890 PMCID: PMC9326103 DOI: 10.3389/fpubh.2022.927527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sepsis is a highly life-threatening heterogeneous syndrome and a global health burden. Studies have shown that many genetic variants could influence the risk of sepsis. Long non-coding RNA lincRNA-NR_024015 may participate in functional alteration of endothelial cell via vascular endothelial growth factor (VEGF) signaling, whereas its relevance between the lincRNA-NR_024015 polymorphism and sepsis susceptibility is still unclear. Methods 474 sepsis patients and 678 healthy controls were enrolled from a southern Chinese child population in the present study. The polymorphism of rs8506 in lincRNA-NR_024015 was determined using Taqman methodology. Results Overall, a significant association was found between rs8506 polymorphism and the risk of sepsis disease (TT vs. CC/CT: adjusted OR = 1.751, 95%CI = 1.024–2.993, P = 0.0406). In the stratified analysis, the results suggested that the carriers of TT genotypes had a significantly increased sepsis risk among the children aged 12–60 months, females, early-stage sepsis and survivors (TT vs. CC/CT: ORage = 2.413; ORfemale = 2.868; ORsepsis = 2.533; ORsurvivor = 1.822; adjusted for age and gender, P < 0.05, respectively). Conclusion Our study indicated that lincRNA-NR_024015 rs8506 TT genotype might contribute to the risk of sepsis in a southern Chinese child population. Future research is required to elucidate the possible immunoregulatory mechanisms of this association and advance the development of novel biomarkers in sepsis.
Collapse
Affiliation(s)
- Jinqing Li
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Wei
- Department of Blood Transfusion, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jie Hong
- Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Jie Hong
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xiaoqiong Gu
| |
Collapse
|
3
|
A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Curr Oncol 2022; 29:2326-2349. [PMID: 35448163 PMCID: PMC9031703 DOI: 10.3390/curroncol29040189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/β-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/β-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients.
Collapse
|
4
|
Luan S, Yang Y, Zhou Y, Zeng X, Xiao X, Liu B, Yuan Y. The emerging role of long noncoding RNAs in esophageal carcinoma: from underlying mechanisms to clinical implications. Cell Mol Life Sci 2021; 78:3403-3422. [PMID: 33464385 PMCID: PMC11071794 DOI: 10.1007/s00018-020-03751-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs), a type of transcriptional product more than 200 nucleotides in length, have emerged as crucial regulators in human cancers. Accumulating data have recently indicated relationships between lncRNAs and esophageal carcinoma (EC). Of note, lncRNAs act as decoys/sponges, scaffolds, guides, and signals to regulate the expression of oncogenes or tumor suppressors at epigenetic, post-transcriptional, and protein levels, through which they exert their unique EC-driving or EC-suppressive functions. Moreover, the features of EC-related lncRNAs have been gradually exploited for developing novel diagnostic and therapeutic strategies in clinical scenarios. LncRNAs have the potential to be used as diagnostic and prognostic indicators individually or in combination with other clinical variables. Beyond these, although the time is not yet ripe, therapeutically targeting EC-related lncRNAs via gene editing, antisense oligonucleotides, RNA interference, and small molecules is likely one of the most promising therapeutic strategies for the next generation of cancer treatment. Herein, we focus on summarizing EC-driving/suppressive lncRNAs, as well as discussing their different features regarding expression profiles, modes of action, and oncological effects. Moreover, we further discuss current challenges and future developing possibilities of capitalizing on lncRNAs for EC early diagnosis and treatment.
Collapse
Affiliation(s)
- Siyuan Luan
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yushang Yang
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yuxin Zhou
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Xiao
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Bo Liu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| | - Yong Yuan
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Sun Z, Niu S, Xu F, Zhao W, Ma R, Chen M. CircAMOTL1 Promotes Tumorigenesis Through miR-526b/SIK2 Axis in Cervical Cancer. Front Cell Dev Biol 2020; 8:568190. [PMID: 33344445 PMCID: PMC7744824 DOI: 10.3389/fcell.2020.568190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
Background Cervical cancer is one of the most common malignancies in women, leading to major health problems for its high morbidity and mortality. Numerous studies have demonstrated that circular RNAs (circRNAs) could be participated in the progression of multifarious diseases, especially plentiful carcinomas. CircAMOTL1 (angiomotin-like1, ID: hsa_circ_0004214), which is located on human chromosome 11:9 4532555-94533477, is involved in the occurrence of breast cancer, etc. However, the intrinsic and concrete molecular mechanism of circAMOTL1 in cervical carcinomas remained thoroughly unclear, which was also the bottleneck of circRNAs studies in cancer. Methods The relative expression levels of circAMOTL1 and miR-526b in cervical carcinoma patients’ specimens and cervical carcinoma cell lines were detected by RT-qPCR. Through experiments including loss-function and overexpression, the biological effects of circAMOTL1 and miR-526b on the proliferation, migration, apoptosis, and tumorigenicity were explored in cervical carcinomas. Dual luciferase reporter gene analysis, western blot, and other methods were adopted to explore the circAMOTL1 potential mechanism in cervical carcinomas. Results In our experiments, our researches displayed that circAMOTL1 was significantly higher expression in cervical carcinomas specimens and cell lines. Further experiments illustrated that the knockdown of circAMOTL1 could restrain the malignant phenotype, AKT signaling, and epithelial–mesenchymal transition (EMT) of in cervical carcinomas cells. Meanwhile miR-526b was downregulated in cervical carcinomas and even miR-526b could partially reverse circAMOTL1 function in malignant cervical tumor cells. CircAMOTL1 acts as a microRNA (miRNA) sponge that actively regulates the expression of salt-inducible kinase 2 (SIK2) to sponge miR-526b and subsequently increases malignant phenotypes of cervical carcinomas cells. In a word, circAMOTL1 acts a carcinogenic role and miR-526b serves as the opposite function of antioncogene in the cervical carcinoma pathogenesis. Conclusion CircAMOTL1-miR-526b-SIK2 axis referred to the malignant progression and development of cervical carcinomas. CircAMOTL1 expression was inversely correlated with miR-526b and positively correlated with SIK2 mRNA in cervical cancer tissues. Thus, circAMOTL1 exerted an oncogenic role in cervical cancer progression through sponging miR-526b. Taken together, our study revealed that circAMOTL1 acted as an oncogene and probably was a potential therapeutic target for the cervical cancer.
Collapse
Affiliation(s)
- Zhengwei Sun
- Department of Obstetrics & Gynecology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Sanqiang Niu
- Department of Obstetrics & Gynecology, Bozhou People's Hospital, Bozhou, China
| | - Fuxia Xu
- Department of Obstetrics & Gynecology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Weidong Zhao
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of USTC, Hefei, China
| | - Rong Ma
- Department of Obstetrics & Gynecology, Anhui Women and Child Health Care Hospital, Hefei, China
| | - Mingwei Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Liu P, Liu W, Gao H, Zhang Y, Yan M, Wang X. Circ0085539 Promotes Osteosarcoma Progression by Suppressing miR-526b-5p and PHLDA1 Axis. Front Oncol 2020; 10:1250. [PMID: 32983961 PMCID: PMC7479240 DOI: 10.3389/fonc.2020.01250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background: We have previously found that circ0085539/miR-526b-5p axis participated in the progression of osteosarcoma (OS). We have been interested in expanding the networking involving circ0085539 and miR-526-5p. We identified another critical downstream target of this axis, pleckstrin homology-like domain family A member 1 (PHLDA1), thus intending to uncover the interaction between the axis and PHLDA1. Methods: Live imaging of mice tumor xenografts was conducted. Immunohistochemistry (IHC) and H&E staining were performed for our in vivo experiment, while the CCK-8 assay, flow cytometry, wound healing, Transwell invasion, and clone formation were employed to assess cellular biological functions. Results: Circ0085539 was first found to be upregulated in osteosarcoma tissues and cell lines, and circ0085539 knockdown obviously suppressed proliferation and induced apoptosis. Subsequently, miR-526b-5p functionally attenuated the tumor suppressive effects induced by circ0106714 silencing on OS cells. PHLDA1 silencing significantly led to proliferation suppression, apoptosis induction, as well as the inhibition of migration, invasion, and colony formation capabilities in OS cells, which also could be restored by the miR-526b-5p inhibitor. Conclusion: Taken together, circ0085539 effectively promoted progression of osteosarcoma through sponging miR-526b-5p to release PHLDA1, strongly suggesting that in vivo intervention of circ0085539–miR-526b-5p–PHLDA1 axis could function as a promising OS-targeted therapy.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun City, China
| | - Wei Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun City, China
| | - Hang Gao
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun City, China
| | - Yuanding Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun City, China
| | - Ming Yan
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun City, China
| | - Xu Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun City, China
| |
Collapse
|
7
|
Long Noncoding RNA HOXD-AS1 Promotes the Proliferation, Migration, and Invasion of Colorectal Cancer via the miR-526b-3p/CCND1 Axis. J Surg Res 2020; 255:525-535. [PMID: 32640404 DOI: 10.1016/j.jss.2020.05.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/23/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies in the world. It has been reported that the abnormal expression of long noncoding RNA HOXD-AS1 promotes the development of CRC, while the mechanism is still unclear. The aim of this study is to investigate the effects of HOXD-AS1 on proliferation, migration, and invasion in CRC and explore the underlying mechanism. METHODS Quantitative real-time polymerase chain reaction was used to detect the expression levels of HOXD-AS1, miR-526b-3p, and cyclin D1 (CCND1) in CRC tissues and cells. Dual-luciferase reporter assay was applied to examine the interaction between miR-526b-3p and HOXD-AS1 or CCND1. In addition, cell proliferation ability was assessed by Cell Counting Kit-8 assay. Cell migration and invasion abilities were determined using transwell assay. Furthermore, Western blot assay was conducted to measure the protein expression of CCND1. RESULTS HOXD-AS1 was highly expressed in CRC, and high expression of HOXD-AS1 was related to the poor prognosis of patients with CRC. MiR-526b-3p could be targeted by HOXD-AS1. Function experiment results revealed that miR-526b-3p inhibitor could reverse the suppressive effect of HOXD-AS1 knockdown on the proliferation, migration, and invasion of CRC cells. Moreover, CCND1 was a target of miR-526b-3p, and its overexpression could reverse the inhibitory effect of miR-526b-3p overexpression on the proliferation, migration, and invasion of CRC cells. In addition, CCND1 overexpression reversed the suppressive effect of HOXD-AS1 knockdown on the proliferation, migration, and invasion of CRC. CONCLUSIONS HOXD-AS1 upregulated the expression of CCND1 to promote the proliferation, migration, and invasion of CRC through targeting miR-526b-3p. This provided a new theoretical basis for clinical anticancer research of CRC.
Collapse
|
8
|
Zou H, Wu LX, Tan L, Shang FF, Zhou HH. Significance of Single-Nucleotide Variants in Long Intergenic Non-protein Coding RNAs. Front Cell Dev Biol 2020; 8:347. [PMID: 32523949 PMCID: PMC7261909 DOI: 10.3389/fcell.2020.00347] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide variants (SNVs) are the most common genetic variants and universally present in the human genome. Genome-wide association studies (GWASs) have identified a great number of disease or trait-associated variants, many of which are located in non-coding regions. Long intergenic non-protein coding RNAs (lincRNAs) are the major subtype of long non-coding RNAs; lincRNAs play crucial roles in various disorders and cellular models via multiple mechanisms. With rapid growth in the number of the identified lincRNAs and genetic variants, there is great demand for an investigation of SNVs in lincRNAs. Hence, in this article, we mainly summarize the significant role of SNVs within human lincRNA regions. Some pivotal variants may serve as risk factors for the development of various disorders, especially cancer. They may also act as important regulatory signatures involved in the modulation of lincRNAs in a tissue- or disorder-specific manner. An increasing number of researches indicate that lincRNA variants would potentially provide additional options for genetic testing and disease risk assessment in the personalized medicine era.
Collapse
Affiliation(s)
- Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lan-Xiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hong-Hao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Wu M, Li X, Liu Q, Xie Y, Yuan J, Wanggou S. miR-526b-3p serves as a prognostic factor and regulates the proliferation, invasion, and migration of glioma through targeting WEE1. Cancer Manag Res 2019; 11:3099-3110. [PMID: 31114353 PMCID: PMC6489667 DOI: 10.2147/cmar.s192361] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Background: MicroRNAs play important roles in cancer progression including glioma. In this study, we aimed to explore the expression pattern, prognostic potential, and functional role of miR-526b-3p in human glioma. Materials and methods: The expression of miR-526b-3p in glioma tissues and the adjacent non-tumor tissues was determined by quantitative RT-PCR. The chi-square test was performed to evaluate the statistical associations between miR-526b-3p level and patient characteristics. The prognostic value of miR-526b-3p was analyzed by Kaplan–Meier and Cox regression analyses. The function of miR-526b-3p was analyzed by MTT, colony formation assay, transwell assay, and flow cytometry analysis in vitro. The binding between miR-526b-3p and predicted target WEE1 was verified using dual luciferase assay and Western blot analysis. Results: We found that miR-526b-3p expression was significantly downregulated in both glioma tissues and cell lines. Downregulation of miR-526b-3p was significantly associated with advanced WHO grade, lower KPS score, and inferior patient outcomes. Functional investigation indicated that overexpression of miR-526b-3p suppressed cell proliferation, migration, and invasion, and promoted apoptosis in glioma cell lines. Mechanically, WEE1 was identified as direct targets of miR-526b-3p and overexpression of WEE1 significantly suppressed the levels of WEE1. Moreover, re-introduction of WEE1 abrogates the suppression of motility and invasiveness induced by miR-526b-3p in glioma cells. Conclusion: These findings indicate that miR-526b-3p may target WEE1 and inhibit glioma tumorigenesis and progression.
Collapse
Affiliation(s)
- Ming Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuanyang Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
10
|
Li H, Wang J, Xu F, Wang L, Sun G, Wang J, Yang Y. By downregulating PBX3, miR-526b suppresses the epithelial-mesenchymal transition process in cervical cancer cells. Future Oncol 2019; 15:1577-1591. [PMID: 30859853 DOI: 10.2217/fon-2018-0575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Research on novel mutant genes may develop the treatment of cervical cancer (CC). The role of miRNA-526b in epithelial-mesenchymal transition (EMT) of CC was investigated. Methods: The role and the molecular mechanism of miRNA-526b in CC and its effect on EMT were analyzed in clinical specimens and oncology experiments. Results: miRNA-526b was proved to be decreased in CC and associated with malignant clinicopathological characters. The character of miRNA-526b in EMT was also inspected in CC cells and tumor models. miRNA-526b was found to be able to inhibit the EMT property of CC cells by directly targeting PBX3. Conclusion: miRNA-526b restoration may be deliberated as a new treatment strategy of CC.
Collapse
Affiliation(s)
- Hongfang Li
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.,Department of Obstetrics & Gynecology, The First People's Hospital of Lanzhou City, Lanzhou, 730050, PR China
| | - Jing Wang
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Feixue Xu
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Liping Wang
- Department of Obstetrics & Gynecology, The First People's Hospital of Lanzhou City, Lanzhou, 730050, PR China
| | - Gaogao Sun
- Department of Obstetrics & Gynecology, The First People's Hospital of Lanzhou City, Lanzhou, 730050, PR China
| | - Jie Wang
- Department of Gynecology, Longhua District People's Hospital of Shenzhen City, Shenzhen, 518109, PR China
| | - Yongxiu Yang
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
11
|
Chen JL, Lin ZX, Qin YS, She YQ, Chen Y, Chen C, Qiu GD, Zheng JT, Chen ZL, Zhang SY. Overexpression of long noncoding RNA LINC01419 in esophageal squamous cell carcinoma and its relation to the sensitivity to 5-fluorouracil by mediating GSTP1 methylation. Ther Adv Med Oncol 2019; 11:1758835919838958. [PMID: 31019568 PMCID: PMC6463338 DOI: 10.1177/1758835919838958] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/23/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genome-wide sequencing investigations have identified numerous long noncoding RNAs (lncRNAs) among mammals, many of which exhibit aberrant expression in cancers, including esophageal squamous cell carcinoma (ESCC). Herein, this study elucidates the role and mechanism by which LINC01419 regulates the DNA methylation of glutathione S-transferase pi 1 (GSTP1) in relation to ESCC progression and the sensitivity of ESCC cells to 5-fluorouracil (5-FU). METHODS LINC01419 and GSTP1 levels were quantified among 38 paired ESCC and adjacent tissue samples collected from patients with ESCC. To ascertain the contributory role of LINC01419 in the progression of ESCC and identify the interaction between LINC01419 and GSTP1 promoter methylation, LINC01419 was overexpressed or silenced, and the DNA methyltransferase inhibitor 5-Aza-CdR was treated. RESULTS Data from the GEO database (GSE21362) and the Cancer Genome Atlas displayed elevated levels of LINC01419 and downregulated levels of GSTP1 in the ESCC tissues and cells. The silencing of LINC01419 led to decreased proliferation, increased apoptosis, and enhanced sensitivity to 5-FU in ESCC cells. Notably, LINC01419 could bind to the promoter region of the GSTP1 gene, resulting in elevated GSTP1 methylation and reduced GSTP1 levels via the recruitment of DNA methyltransferase among ESCC cells, whereby ESCC progression was stimulated accompanied by reduced ESCC cell sensitivity to 5-FU. GSTP1 demethylation by 5-Aza-CdR was observed to reverse the effects of LINC01419 overexpression in ESCC cells and the response to 5-FU. CONCLUSION Highly expressed LINC01419 in ESCC promotes GSTP1 methylation, which ultimately acts to promote the event of ESCC and diminish the sensitivity of ESCC cells to 5-FU, highlighting a novel potential strategy to improve 5-FU-based chemotherapy in ESCC.
Collapse
Affiliation(s)
- Jian-Liang Chen
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhi-Xiong Lin
- Radiotherapy Department, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yun-Sheng Qin
- Chest Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yu-Qi She
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yun Chen
- Clinical Pharmacy Research Center, Shantou University Medical College, Shantou, China
| | - Chen Chen
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Guo-Dong Qiu
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jie-Ting Zheng
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhong-Lin Chen
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | | |
Collapse
|
12
|
Zou H, Zhou HH. WITHDRAWN: Single nucleotide polymorphism, a putative driver for the role of long intergeneric non-coding RNA. Cancer Lett 2018:S0304-3835(18)30691-8. [PMID: 30503557 DOI: 10.1016/j.canlet.2018.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Liu X, Yang L, Tu J, Cai W, Zhang M, Shou Z, Yao Y, Xu Q. microRNA-526b servers as a prognostic factor and exhibits tumor suppressive property by targeting Sirtuin 7 in hepatocellular carcinoma. Oncotarget 2017; 8:87737-87749. [PMID: 29152116 PMCID: PMC5675668 DOI: 10.18632/oncotarget.21209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/27/2017] [Indexed: 12/29/2022] Open
Abstract
Recent studies have reported that microRNA-526b (miR-526b) is implicated in the growth and metastasis of cancer cells. However, the clinical significance of miR-526b and its role as well as underlying mechanisms are largely unknown in hepatocellular carcinoma (HCC). Here, we detected miR-526b expression difference between HCC and matched nontumor tissues with qRT-PCR. We found that miR-526b displayed lower expression in HCC patient tissues and cells. Clinical analysis revealed that low miR-526b expression correlated with large tumor size, venous infiltration, advanced tumor-node-metastasis (TNM) stage. Furthermore, miR-526b underexpression independently predicted poor prognosis of HCC patients. Functionally, we demonstrated that miR-526b inhibited proliferation, migration and invasion of HCC cells in vitro. Moreover, miR-526b overexpression restrained the tumor growth and pulmonary metastasis in vivo. Mechanistically, we proved that miR-526b could directly bind to 3′UTR of sirtuin 7 (SIRT7) mRNA and repressed its expression. miR-526b and SIRT7 showed a negative correlation in HCC tissues. More importantly, up-regulating SIRT7 expression antagonized miR-526b-inhibited proliferation, migration and invasion in SMMC-7721 cells. Furthermore, miR-526b suppressed epithelial-to-mesenchymal transition (EMT) of HCC cells. Immunoblotting analysis indicated that miR-526b reduced the levels of phosphorylated ERK (p-ERK), c-Myc, Cyclin D1, c-Jun, SNAIL and SLUG in HCC cells. SIRT7 restoration promoted phosphorylation of ERK and EMT in miR-526b overexpressing SMMC-7721 cells. Taken together, this is the first time we demonstrated that miR-526b might function as a prognostic biomarker and suppressed SIRT7 expression, and subsequently led to the growth and metastasis of HCC. Our findings provide miR-526b/SIRT7 axis as a promising drug target for HCC.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province 310014, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province 310014, China
| | - Jianfeng Tu
- Department of Emergency, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province 310014, China
| | - Wenwei Cai
- Department of Emergency, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province 310014, China
| | - Meiqi Zhang
- Department of Emergency, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province 310014, China
| | - Zhangxuan Shou
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province 310014, China
| | - Yingmin Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province 310014, China
| |
Collapse
|