1
|
Zhang Y, Wang ZZ, Han AQ, Yang MY, Zhu LX, Pan FM, Wang Y. TuBG1 promotes hepatocellular carcinoma via ATR/P53-apoptosis and cycling pathways. Hepatobiliary Pancreat Dis Int 2024; 23:195-209. [PMID: 37806848 DOI: 10.1016/j.hbpd.2023.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND As reported, γ-tubulin (TuBG1) is related to the occurrence and development of various types of malignant tumors. However, its role in hepatocellular cancer (HCC) is not clear. The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients. METHODS The correlation between TuBG1 and clinical parameters and survival in HCC patients was explored by bioinformatics analysis. Immunohistochemistry was used for the verification. The molecular function of TuBG1 was measured using colony formation, scratch assay, trans-well assay and flow cytometry. Gene set enrichment analysis (GSEA) was used to pick up the enriched pathways, followed by investigating the target pathways using Western blotting. The tumor-immune system interactions and drug bank database (TISIDB) was used to evaluate TuBG1 and immunity. Based on the TuBG1-related immune genes, a prognostic model was constructed and was further validated internally and externally. RESULTS The bioinformatic analysis found high expressed TuBG1 in HCC tissue, which was confirmed using immunohistochemistry and Western blotting. After silencing the TuBG1 in HCC cell lines, more G1 arrested cells were found, cell proliferation and invasion were inhibited, and apoptosis was promoted. Furthermore, the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3 (ATR), phospho-P38 mitogen-activated protein kinase (P-P38MAPK), phospho-P53 (P-P53), B-cell lymphoma-2 associated X protein (Bax), cleaved caspase 3 and P21; decreased the expressions of B-cell lymphoma-2 (Bcl-2), cyclin D1, cyclin E2, cyclin-dependent kinase 2 (CDK2) and CDK4. The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively correlated with the overall survival. The constructed immune prognosis model could effectively evaluate the prognosis. CONCLUSIONS The increased expression of TuBG1 in HCC is associated with poor prognosis, which might be involved in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhen-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - An-Qi Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ming-Ya Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Li-Xin Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fa-Ming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Yong Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
2
|
Amgalan B, Day CP, Przytycka TM. Exploring tumor-normal cross-talk with TranNet: Role of the environment in tumor progression. PLoS Comput Biol 2023; 19:e1011472. [PMID: 37721939 PMCID: PMC10538798 DOI: 10.1371/journal.pcbi.1011472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
There is a growing awareness that tumor-adjacent normal tissues used as control samples in cancer studies do not represent fully healthy tissues. Instead, they are intermediates between healthy tissues and tumors. The factors that contribute to the deviation of such control samples from healthy state include exposure to the tumor-promoting factors, tumor-related immune response, and other aspects of tumor microenvironment. Characterizing the relation between gene expression of tumor-adjacent control samples and tumors is fundamental for understanding roles of microenvironment in tumor initiation and progression, as well as for identification of diagnostic and prognostic biomarkers for cancers. To address the demand, we developed and validated TranNet, a computational approach that utilizes gene expression in matched control and tumor samples to study the relation between their gene expression profiles. TranNet infers a sparse weighted bipartite graph from gene expression profiles of matched control samples to tumors. The results allow us to identify predictors (potential regulators) of this transition. To our knowledge, TranNet is the first computational method to infer such dependencies. We applied TranNet to the data of several cancer types and their matched control samples from The Cancer Genome Atlas (TCGA). Many predictors identified by TranNet are genes associated with regulation by the tumor microenvironment as they are enriched in G-protein coupled receptor signaling, cell-to-cell communication, immune processes, and cell adhesion. Correspondingly, targets of inferred predictors are enriched in pathways related to tissue remodelling (including the epithelial-mesenchymal Transition (EMT)), immune response, and cell proliferation. This implies that the predictors are markers and potential stromal facilitators of tumor progression. Our results provide new insights into the relationships between tumor adjacent control sample, tumor and the tumor environment. Moreover, the set of predictors identified by TranNet will provide a valuable resource for future investigations.
Collapse
Affiliation(s)
- Bayarbaatar Amgalan
- National Center for Biotechnology Information/National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics/Center for Cancer Research/National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Teresa M. Przytycka
- National Center for Biotechnology Information/National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Cai J, Su L, Luo W. WD repeat domain 62 (WDR62) promotes resistance of colorectal cancer to oxaliplatin through modulating mitogen-activated protein kinase (MAPK) signaling. Bioengineered 2022; 13:14450-14459. [PMID: 35758246 PMCID: PMC9342197 DOI: 10.1080/21655979.2022.2086381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
WD repeat domain 62 (WDR62) is involved in embryonic brain growth through regulation of glial and neural cell populations. WDR62 is also implicated in the carcinogenesis of various cancers. The role of WDR62 in progression and chemoresistance of colorectal cancer (CRC) was investigated. Firstly, oxaliplatin-resistant CRC cells (HCT116/R and HT29/R) were sequentially exposed to an increasing concentration of oxaliplatin. The results showed that WDR62 was elevated in CRC tissues, and oxaliplatin resistance conferred up-regulation of WDR62 in CRC cells. Knockdown of WDR62 reduced cell proliferation and promoted the apoptosis of oxaliplatin-resistant CRC cells. Moreover, silencing of WDR62 increased fluorescence intensity of γH2AX, and decreased protein expression of p-DNA-PK and Rad51 in the oxaliplatin-resistant CRC cells. The protein expression of p-ERK, p-JNK, and p-p38 in oxaliplatin-resistant CRC cells were down-regulated by knockdown of WDR62. In conclusion, silencing of WDR62 suppressed oxaliplatin resistance and DNA damage repair of CRC cells through inactivation of MAPK signaling.
Collapse
Affiliation(s)
- Juanjuan Cai
- Department of Pharmacy, The Affiliated Hospital of Medical School, Ningbo University, Ningbo city, Zhejiang, China
| | - Lingling Su
- Department of Pharmacy, The Affiliated Hospital of Medical School, Ningbo University, Ningbo city, Zhejiang, China
| | - Weiwei Luo
- Department of Pharmacy, Ningbo No. 6 Hospital, Ningbo city, Zhejiang, China
| |
Collapse
|
4
|
Systematic Analysis of the Oncogenic Role of WDR62 in Human Tumors. DISEASE MARKERS 2021; 2021:9940274. [PMID: 34306258 PMCID: PMC8272457 DOI: 10.1155/2021/9940274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/11/2023]
Abstract
Background Emerging studies support the oncogenic role of WD repeat domain 62 (WDR62) in few tumors, while no pan-cancer analysis is available. In this study, we analyzed systematically the oncogenic role of WDR62 across a series of human tumors based on bioinformatic data mining. Methods The expression level of WDR62 was analyzed via GEPIA2, TIMER, UALCAN, and StarBase databases. The prognostic role was analyzed via GEPIA2, TIMER, UALCAN, StarBase, TISIDB, TCGA portal, Kaplan-Meier Plotter, and PrognoScan databases. Then, we explored the causes for WDR62 abnormal expression via TCGA portal and UALCAN databases. Subsequently, the STRING and GeneMANIA databases were used to find the interactive networks for WDR62. Furthermore, we analyzed the correlation between WDR62 expression and immune features via TIMER and TISIDB databases. Results We found that WDR62 was significantly upregulated in most of the tumors and correlated with poor prognosis mainly in 6 candidate tumors—BLCA, BRCA, KIRC, KIRP, LIHC, and LUAD. Abnormal WDR62 expression may be probably attributed to TP53 mutation and promoter DNA methylation. Relative network analysis demonstrated that WDR62 was mainly involved in MAPK and toll-like receptor signaling pathway. WDR62 expression was associated with various immune cell infiltrations, especially cancer-associated fibroblasts (CAF) and T cell regulatory (Treg) cells, and was markedly correlated with poor prognosis. Moreover, WDR62 expression was closely associated with the expression of some immunomodulators such as PD-L1 and has a significant prognostic value. Conclusions Our study revealed that WDR62 could serve as a diagnostic and prognostic biomarker for several cancers. Importantly, WDR62 was closely associated with various immune cell infiltration, and to a certain extent, it can predict the effect of immunotherapy in particular PD1/PD-L1 inhibitors. Our pan-cancer study provided useful information on the oncogenic role of WDR62, contributing to further exploring the underlying mechanisms.
Collapse
|
5
|
Zhi Y, Zhou X, Yu J, Yuan L, Zhang H, Ng DCH, Xu Z, Xu D. Pathophysiological Significance of WDR62 and JNK Signaling in Human Diseases. Front Cell Dev Biol 2021; 9:640753. [PMID: 33937237 PMCID: PMC8086514 DOI: 10.3389/fcell.2021.640753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/29/2021] [Indexed: 12/31/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) is highly evolutionarily conserved and plays important roles in a broad range of physiological and pathological processes. The WD40-repeat protein 62 (WDR62) is a scaffold protein that recruits different components of the JNK signaling pathway to regulate several human diseases including neurological disorders, infertility, and tumorigenesis. Recent studies revealed that WDR62 regulates the process of neural stem cell mitosis and germ cell meiosis through JNK signaling. In this review we summarize the roles of WDR62 and JNK signaling in neuronal and non-neuronal contexts and discuss how JNK-dependent signaling regulates both processes. WDR62 is involved in various human disorders via JNK signaling regulation, and may represent a promising therapeutic strategy for the treatment of related diseases.
Collapse
Affiliation(s)
- Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Xiaokun Zhou
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Ling Yuan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hongsheng Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Dominic C H Ng
- Faculty of Medicine, School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Mittal K, Kaur J, Jaczko M, Wei G, Toss MS, Rakha EA, Janssen EAM, Søiland H, Kucuk O, Reid MD, Gupta MV, Aneja R. Centrosome amplification: a quantifiable cancer cell trait with prognostic value in solid malignancies. Cancer Metastasis Rev 2021; 40:319-339. [PMID: 33106971 PMCID: PMC7897259 DOI: 10.1007/s10555-020-09937-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Numerical and/or structural centrosome amplification (CA) is a hallmark of cancers that is often associated with the aberrant tumor karyotypes and poor clinical outcomes. Mechanistically, CA compromises mitotic fidelity and leads to chromosome instability (CIN), which underlies tumor initiation and progression. Recent technological advances in microscopy and image analysis platforms have enabled better-than-ever detection and quantification of centrosomal aberrancies in cancer. Numerous studies have thenceforth correlated the presence and the degree of CA with indicators of poor prognosis such as higher tumor grade and ability to recur and metastasize. We have pioneered a novel semi-automated pipeline that integrates immunofluorescence confocal microscopy with digital image analysis to yield a quantitative centrosome amplification score (CAS), which is a summation of the severity and frequency of structural and numerical centrosome aberrations in tumor samples. Recent studies in breast cancer show that CA increases across the disease progression continuum, while normal breast tissue exhibited the lowest CA, followed by cancer-adjacent apparently normal, ductal carcinoma in situ and invasive tumors, which showed the highest CA. This finding strengthens the notion that CA could be evolutionarily favored and can promote tumor progression and metastasis. In this review, we discuss the prevalence, extent, and severity of CA in various solid cancer types, the utility of quantifying amplified centrosomes as an independent prognostic marker. We also highlight the clinical feasibility of a CA-based risk score for predicting recurrence, metastasis, and overall prognosis in patients with solid cancers.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Jaspreet Kaur
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Meghan Jaczko
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Guanhao Wei
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Michael S Toss
- Department of Pathology, University of Nottingham and Nottingham University Hospitals, Nottingham, UK
| | - Emad A Rakha
- Department of Pathology, University of Nottingham and Nottingham University Hospitals, Nottingham, UK
| | | | - Håvard Søiland
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Omer Kucuk
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University Hospital, Atlanta, GA, USA
| | | | | | - Ritu Aneja
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA.
| |
Collapse
|
7
|
Shi R, Bao X, Rogowski P, Schäfer C, Schmidt-Hegemann NS, Unger K, Lu S, Sun J, Buchner A, Stief C, Belka C, Li M. Establishment and Validation of an Individualized Cell Cycle Process-Related Gene Signature to Predict Cancer-Specific Survival in Patients with Bladder Cancer. Cancers (Basel) 2020; 12:cancers12051146. [PMID: 32370292 PMCID: PMC7281226 DOI: 10.3390/cancers12051146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
More accurate models are essential to identify high-risk bladder cancer (BCa) patients who will benefit from adjuvant therapies and thus helpful to facilitate personalized management of BCa. Among various cancer-related hallmarks and pathways, cell cycle process (CCP) was identified as a dominant risk factor for cancer-specific survival (CSS) in BCa. Using a series of bioinformatic and statistical approaches, a CCP-related gene signature was established, and the prognostic value was validated in other independent BCa cohorts. In addition, the risk score derived from the gene signature serves as a promising marker for therapeutic resistance. In combination with clinicopathological features, a nomogram was constructed to provide more accurate prediction for CSS, and a decision tree was built to identify high-risk subgroup of muscle invasive BCa patients. Overall, the gene signature could be a useful tool to predict CSS and help to identify high-risk subgroup of BCa patients, which may benefit from intensified adjuvant therapy.
Collapse
Affiliation(s)
- Run Shi
- Department of Radiation Oncology, University Hospital, LMU Munich, D-81377 Munich, Germany; (R.S.); (P.R.); (C.S.); (N.-S.S.-H.); (K.U.); (J.S.); (C.B.)
| | - Xuanwen Bao
- Technical University of Munich, D-80333 Munich, Germany;
| | - Paul Rogowski
- Department of Radiation Oncology, University Hospital, LMU Munich, D-81377 Munich, Germany; (R.S.); (P.R.); (C.S.); (N.-S.S.-H.); (K.U.); (J.S.); (C.B.)
| | - Christian Schäfer
- Department of Radiation Oncology, University Hospital, LMU Munich, D-81377 Munich, Germany; (R.S.); (P.R.); (C.S.); (N.-S.S.-H.); (K.U.); (J.S.); (C.B.)
| | - Nina-Sophie Schmidt-Hegemann
- Department of Radiation Oncology, University Hospital, LMU Munich, D-81377 Munich, Germany; (R.S.); (P.R.); (C.S.); (N.-S.S.-H.); (K.U.); (J.S.); (C.B.)
| | - Kristian Unger
- Department of Radiation Oncology, University Hospital, LMU Munich, D-81377 Munich, Germany; (R.S.); (P.R.); (C.S.); (N.-S.S.-H.); (K.U.); (J.S.); (C.B.)
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, D-85764 Neuherberg, Germany
| | - Shun Lu
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China;
| | - Jing Sun
- Department of Radiation Oncology, University Hospital, LMU Munich, D-81377 Munich, Germany; (R.S.); (P.R.); (C.S.); (N.-S.S.-H.); (K.U.); (J.S.); (C.B.)
| | - Alexander Buchner
- Department of Urology, University Hospital, LMU Munich, D-81377 Munich, Germany; (A.B.); (C.S.)
| | - Christian Stief
- Department of Urology, University Hospital, LMU Munich, D-81377 Munich, Germany; (A.B.); (C.S.)
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, D-81377 Munich, Germany; (R.S.); (P.R.); (C.S.); (N.-S.S.-H.); (K.U.); (J.S.); (C.B.)
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, D-81377 Munich, Germany; (R.S.); (P.R.); (C.S.); (N.-S.S.-H.); (K.U.); (J.S.); (C.B.)
- Correspondence:
| |
Collapse
|
8
|
Shohayeb B, Mitchell N, Millard SS, Quinn LM, Ng DCH. Elevated levels of Drosophila Wdr62 promote glial cell growth and proliferation through AURKA signalling to AKT and MYC. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118713. [PMID: 32246948 DOI: 10.1016/j.bbamcr.2020.118713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
WD40-Repeat Protein 62 (WDR62) is required to maintain neural and glial cell populations during embryonic brain growth. Although elevated expression of WDR62 is frequently associated with several tumour types, potential effects of excess WDR62 on proliferative growth remain undefined. Here, we demonstrate that glia specific overexpression of WDR62 in Drosophila larval brains resulted in increased cell size, over-proliferation and increased brain volume, without overt disruption of tissue organization. We further demonstrate WDR62 promoted over-proliferation and brain overgrowth by activating AURKA and pAKT signalling to increase MYC function in glial cells. Together these data suggest WDR62 normally functions in the glial lineage to activate oncogenic signalling networks, promoting proliferation and brain overgrowth.
Collapse
Affiliation(s)
- Belal Shohayeb
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Queensland 4067, Australia
| | - Naomi Mitchell
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 260, Australia
| | - S Sean Millard
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Queensland 4067, Australia
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 260, Australia
| | - Dominic C H Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Queensland 4067, Australia.
| |
Collapse
|
9
|
Zhou X, Zhi Y, Yu J, Xu D. The Yin and Yang of Autosomal Recessive Primary Microcephaly Genes: Insights from Neurogenesis and Carcinogenesis. Int J Mol Sci 2020; 21:ijms21051691. [PMID: 32121580 PMCID: PMC7084222 DOI: 10.3390/ijms21051691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
The stem cells of neurogenesis and carcinogenesis share many properties, including proliferative rate, an extensive replicative potential, the potential to generate different cell types of a given tissue, and an ability to independently migrate to a damaged area. This is also evidenced by the common molecular principles regulating key processes associated with cell division and apoptosis. Autosomal recessive primary microcephaly (MCPH) is a neurogenic mitotic disorder that is characterized by decreased brain size and mental retardation. Until now, a total of 25 genes have been identified that are known to be associated with MCPH. The inactivation (yin) of most MCPH genes leads to neurogenesis defects, while the upregulation (yang) of some MCPH genes is associated with different kinds of carcinogenesis. Here, we try to summarize the roles of MCPH genes in these two diseases and explore the underlying mechanisms, which will help us to explore new, attractive approaches to targeting tumor cells that are resistant to the current therapies.
Collapse
Affiliation(s)
- Xiaokun Zhou
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Dan Xu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Correspondence: ; Tel.: +86-17085937559
| |
Collapse
|
10
|
Chen Z, Zhou Y, Luo R, Liu K, Chen Z. Trophinin-associated protein expression is an independent prognostic biomarker in lung adenocarcinoma. J Thorac Dis 2019; 11:2043-2050. [PMID: 31285897 DOI: 10.21037/jtd.2019.04.86] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Lung cancer is the leading cause of cancer-related deaths worldwide, with lung adenocarcinoma (LAC) representing the most common subtype. Trophinin-associated protein (TROAP) is a cytoplasmic protein first identified to mediate the process of embryo transplantation, which has been recently found to be involved in microtubule regulation. However, limited information about the role of TROAP in LAC is available. Methods We evaluated the relationship of TROAP expression in LAC tissues with clinical pathologic parameters and the survival time in LAC patients based on a statistical analysis of The Cancer Genome Atlas (TCGA) lung cancer data (N=528). Differences in survival between high and low expression groups (median expression cutoff) from the Cox univariate/multivariate regression analysis were then compared. Results According to the Chi-square tests, we found high TROAP expression correlated with younger age (≤60) (P=0.047), male sex (P<0.005), an earlier T-stage (P=0.011), N-stage (P=0.017), M-stage (P=0.022), TNM (P=0.007), and a longer smoking history (>30 pack-year) (P<0.001). A Kaplan-Meier analysis demonstrated that high TROAP expression may correspond with poor overall survival of LAC patients in T3 stage (P=0.0013), N0 stage (P=0.014), and M0 stage (P=0.0023). Multivariate analysis confirmed that TROAP expression was related to overall survival in LAC patients independently [hazard ratio (HR): 1.784, 95% confidence interval (CI): 1.072-2.968, P=0.026]. Conclusions Our results suggested that TROAP is an independent prognostic biomarker of poor survival in LAC.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yuhan Zhou
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Raojun Luo
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Kai Liu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zhoumiao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
11
|
He W, Fu L, Yan Q, Zhou Q, Yuan K, Chen L, Han Y. Gene set enrichment analysis and meta-analysis identified 12 key genes regulating and controlling the prognosis of lung adenocarcinoma. Oncol Lett 2019; 17:5608-5618. [PMID: 31186783 PMCID: PMC6507356 DOI: 10.3892/ol.2019.10236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to analyze lung adenocarcinoma-associated microarray data and identify potentially crucial genes. The gene expression profiles were downloaded from the Gene Expression Omnibus database and 6 datasets, of which 2 were discarded and 4 were retained, were preprocessed using packages in the R computing language. Subsequently, Gene Set Enrichment Analysis (GSEA) and meta-analysis was used to screen the common pathways and differentially expressed genes at the transcriptional level. The genes detected from GSEA through The Cancer Genome Atlas databases were subsequently examined, and the crucial genes by survival data were identified. Pathways of the crucial genes were obtained using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of the online website Database for Annotation, Visualization and Integrated Discovery (DAVID) tool, and the pathways of crucial genes that were upregulated or downregulated were matched using the Venn method to identify the common crucial pathways. Furthermore, on the basis of the common crucial pathways, key genes that are closely associated with the development and progression of lung adenocarcinoma were identified with the KEGG pathway of DAVID. Additional information was obtained through Gene Ontology annotation. A total of two key pathways, including cell cycle and DNA replication, as well as 12 key genes [DNA polymerase δ subunit 2, DNA replication licensing factor MCM4, MCM6, mitotic checkpoint serine/threonine-protein kinase BUB1, BUB1β, mitotic spindle assembly checkpoint protein MAD2A, dual specificity protein kinase TTK, M-phase inducer phosphatase 1, cell division control protein 45 homolog, cyclin-dependent kinase inhibitor 1C, pituitary tumor-transforming gene 1 protein and polo-like kinase 1] were identified. These key pathways and genes may be studied in future studies involving gene transfection/knockdown, which may provide insights into the prognosis of lung adenocarcinoma. Additional studies are required to confirm their biological function.
Collapse
Affiliation(s)
- Wenwu He
- Department of Thoracic Surgery, Sichuan Cancer Hospital and Research Institute, Chengdu, Sichuan 610041, P.R. China
| | - Liangmin Fu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qunlun Yan
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qiuxi Zhou
- Department of Respiratory Medicine, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| | - Kun Yuan
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Linxin Chen
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yongtao Han
- Department of Thoracic Surgery, Sichuan Cancer Hospital and Research Institute, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
12
|
Sugita S, Yoshino H, Yonemori M, Miyamoto K, Matsushita R, Sakaguchi T, Itesako T, Tatarano S, Nakagawa M, Enokida H. Tumor‑suppressive microRNA‑223 targets WDR62 directly in bladder cancer. Int J Oncol 2019; 54:2222-2236. [PMID: 30942440 DOI: 10.3892/ijo.2019.4762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/14/2019] [Indexed: 11/05/2022] Open
Abstract
miRNA‑223 (miR‑223) has been reported to function not only as a tumor suppressor, but also as an oncogenic microRNA (miRNA or miR) in various cancer cells. Therefore, the functional role of miR‑223 has not been elucidated to date, at least to the best of our knowledge. We previously performed the deep sequencing analysis of clinical bladder cancer (BC) specimens. It was revealed that miR‑223 expression was significantly downregulated in BC, suggesting that miR‑223 functions as a tumor suppressor miRNA in BC. The aim of this study was to investigate the functional roles of miR‑223 and to identify its targets in BC. The expression levels of miR‑223 were significantly decreased in our clinical BC specimens. The Cancer Genome Atlas (TCGA) database indicated that miR‑223 expression was related to lymphovascular invasion and distant metastasis. The restoration of miR‑223 expression significantly inhibited tumor aggressiveness and induced apoptosis via caspase‑3/7 activation in BC cells. WD repeat domain 62 (WDR62), a candidate target of miR‑223 according to in silico analyses, has been previously proposed to play a role in neurodevelopment. Direct binding between WDR62 and miR‑223 was confirmed by luciferase assay. The TCGA database revealed positive associations between WDR62 mRNA expression and a higher tumor grade and stage in BC. The knockdown of WDR62 significantly inhibited tumor aggressiveness and induced the apoptosis of BC cells. On the whole, the findings of this study reveal a novel miR‑223 target, oncogenic WDR62, and provided insight into the oncogenesis of BC.
Collapse
Affiliation(s)
- Satoshi Sugita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Masaya Yonemori
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Kazutaka Miyamoto
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Toshihiko Itesako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| |
Collapse
|
13
|
Hammad MO, Elabbasy LM, Abd Elghaffar MA, Zaki MMA, Bazeed FB, Zahran MA. Significance of CEP78 and WDR62 gene expressions in differentiated thyroid carcinoma: Possible predictors of lateral lymph node metastasis. Asia Pac J Clin Oncol 2019; 15:e154-e161. [PMID: 30884127 DOI: 10.1111/ajco.13143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/17/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES This study aimed at investigating the clinical significance of CEP78 and WDR62 in differentiated thyroid carcinoma (DTC). This study also aimed at finding predictors that help in detecting patients with DTC who have high risk for lateral lymph node metastasis (LNM). METHODS Quantitative real-time polymerase chain reaction (RT-qPCR) was performed to examine CEP78, and WDR62 mRNA expressions in 40 tissue specimens of DTC, and 40 goiter tissue specimens. Additionally, we reviewed clinical, ultrasound, laboratory, pathological data of patients to analyze the associations between these characteristics and lateral LNM. RESULTS Our results demonstrated that relative CEP78 mRNA levels were significantly decreased in thyroid cancer tissues than goiter tissues (P = 0.002). ROC curve analysis confirmed the diagnostic value of CEP78 mRNA expression, providing an AUC equals to 0.698 (95% confidence intervals (CI), 0.583-0.813; P = 0.002). The relative WDR62 mRNA expression was not statistically different in DTC tissues and goiter tissues (P = 0.686). Furthermore, the DTC patients had been included to examine risk factors for lateral LNM. In multivariate analysis, the significant factors for predicting lateral LNM were low CEP78 mRNA expression (cut off value ≤0.54; P = 0.03; OR = 19.62; 95% CI, 1.3-296.23), central LNM (P = 0.011; OR = 33.6; 95% CI, 2.24-503.6) and calcifications (P = 0.023; OR = 27.187; 95% CI, 1.57-469.5). CONCLUSIONS CEP78 can be used as a promising molecular biomarker for differentiation between DTC and goiter tissues, in addition it might serve as a predictor of lateral LNM in DTC along with central LNM and calcifications. Unlike CEP78, WDR62 mRNA expression was not statistically different in DTC and goiter.
Collapse
Affiliation(s)
- Maha O Hammad
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Lamiaa M Elabbasy
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Marwa M A Zaki
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fagr B Bazeed
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed A Zahran
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Patwardhan D, Mani S, Passemard S, Gressens P, El Ghouzzi V. STIL balancing primary microcephaly and cancer. Cell Death Dis 2018; 9:65. [PMID: 29352115 PMCID: PMC5833631 DOI: 10.1038/s41419-017-0101-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 11/25/2022]
Abstract
Cell division and differentiation are two fundamental physiological processes that need to be tightly balanced to achieve harmonious development of an organ or a tissue without jeopardizing its homeostasis. The role played by the centriolar protein STIL is highly illustrative of this balance at different stages of life as deregulation of the human STIL gene expression has been associated with either insufficient brain development (primary microcephaly) or cancer, two conditions resulting from perturbations in cell cycle and chromosomal segregation. This review describes the recent advances on STIL functions in the control of centriole duplication and mitotic spindle integrity, and discusses how pathological perturbations of its finely tuned expression result in chromosomal instability in both embryonic and postnatal situations, highlighting the concept that common key factors are involved in developmental steps and tissue homeostasis.
Collapse
Affiliation(s)
- Dhruti Patwardhan
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for Neuroscience, IISC Bangalore, India
| | - Shyamala Mani
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Curadev Pharma, B 87, Sector 83, Noida, UP, 201305,, India
| | - Sandrine Passemard
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- AP HP, Hôpital Robert Debré, Service de Génétique Clinique, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Vincent El Ghouzzi
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
15
|
Shohayeb B, Lim NR, Ho U, Xu Z, Dottori M, Quinn L, Ng DCH. The Role of WD40-Repeat Protein 62 (MCPH2) in Brain Growth: Diverse Molecular and Cellular Mechanisms Required for Cortical Development. Mol Neurobiol 2017; 55:5409-5424. [DOI: 10.1007/s12035-017-0778-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022]
|