1
|
Soria E, Lu Q, Boswell W, Du K, Xing Y, Boswell M, Weldon KS, Lai Z, Savage M, Schartl M, Lu Y. Segregation Between an Ornamental and a Disease Driver Gene Provides Insights Into Pigment Cell Regulation. Pigment Cell Melanoma Res 2024. [PMID: 39289030 DOI: 10.1111/pcmr.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Genetic interactions are adaptive within a species. Hybridization can disrupt such species-specific genetic interactions and creates novel interactions that alter the hybrid progeny overall fitness. Hybrid incompatibility, which refers to degenerative genetic interactions that decrease the overall hybrid survival and sterility, is one of the results from combining two diverged genomes in hybrids. The discovery of spontaneous lethal tumorigenesis and underlying genetic interactions in select hybrids between diverged Xiphophorus species showed that lethal pathological process can result from degenerative genetic interactions. Such genetic interactions leading to lethal phenotype are thought to shield gene flow between diverged species. However, hybrids between certain Xiphophorus species do not develop such tumors. Here we report the identification of a locus residing in the genome of one Xiphophorus species that represses an oncogene from a different species. Our finding provides insights into normal and pathological pigment cell development, regulation and a molecular mechanism in hybrid incompatibility.
Collapse
Affiliation(s)
- Erika Soria
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | | | - Will Boswell
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Yanting Xing
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Mikki Boswell
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Korri S Weldon
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Markita Savage
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Yuan Lu
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| |
Collapse
|
2
|
Soria E, Lu Q, Boswell W, Du K, Xing Y, Boswell M, Weldon KS, Lai Z, Savage M, Schartl M, Lu Y. Segregation between an ornamental and a disease driver gene provides insights into pigment cell regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595041. [PMID: 38826429 PMCID: PMC11142077 DOI: 10.1101/2024.05.20.595041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Genetic interactions are adaptive within a species. Hybridization can disrupt such species-specific genetic interactions and creates novel interactions that alter the hybrid progeny overall fitness. Hybrid incompatibility, which refers to degenerative genetic interactions that decrease the overall hybrid survival, is one of the results from combining two diverged genomes in hybrids. The discovery of spontaneous lethal tumorigenesis and underlying genetic interactions in select hybrids between diverged Xiphophorus species showed that lethal pathological process can result from degenerative genetic interactions. Such genetic interactions leading to lethal phenotype are thought to shield gene flow between diverged species. However, hybrids between certain Xiphophorus species do not develop such tumors. Here we report the identification of a locus residing in the genome of one Xiphophorus species that represses an oncogene from a different species. Our finding provides insights into normal and pathological pigment cell development, regulation and molecular mechanism in hybrid incompatibility. Significance The Dobzhansky-Muller model states epistatic interactions occurred between genes in diverged species underlies hybrid incompatibility. There are a few vertebrate interspecies hybrid cases that support the Dobzhansky-Muller model. This study reports a fish hybrid system where incompatible genetic interactions are involved in neuronal regulation of pigment cell biology, and also identified a novel point of regulation for pigment cells.
Collapse
|
3
|
Liu Z, Chen B, Zou Z, Li D, Zhu J, Yu J, Xiao W, Yang H. Non-Additive and Asymmetric Allelic Expression of p38 mapk in Hybrid Tilapia ( Oreochromis niloticus ♀ × O. aureus ♂). Animals (Basel) 2024; 14:266. [PMID: 38254435 PMCID: PMC10812652 DOI: 10.3390/ani14020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Hybridization is a widely used breeding technique in fish species that enhances desirable traits in cultured species through heterosis. However, the mechanism by which hybrids alter gene expression to form heterosis remains unclear. In this study, a group of hybrid tilapia was used to elucidate heterosis through interspecies crossing. Specifically, p38 was analyzed to describe the regulation of gene expression variation in hybrid tilapia. Transcripts from the Nile tilapia allele were found to be significantly higher than those from the blue tilapia allele in hybrid individuals, indicating that the expression of p38 was dominated by Nile tilapia sub-genomic alleles. The study also found a compensatory interaction of cis- and trans-acting elements of the Nile tilapia and blue tilapia sub-genomes, inducing a non-additive expression of p38 in hybrids. Eight specific SNPs were identified in the p38 promoter regions of Nile tilapia and blue tilapia, and were found to be promoter differences leading to differences in gene expression efficiencies between parental alleles using a dual-luciferase reporter system. This study provides insights into the non-additive expression patterns of key functional genes in fish hybrids related to growth and immunity response.
Collapse
Affiliation(s)
- Zihui Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Binglin Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Zhiying Zou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Dayu Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jinglin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jie Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Wei Xiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Hong Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| |
Collapse
|
4
|
Lu Y, Rice E, Du K, Kneitz S, Naville M, Dechaud C, Volff JN, Boswell M, Boswell W, Hillier L, Tomlinson C, Milin K, Walter RB, Schartl M, Warren WC. High resolution genomes of multiple Xiphophorus species provide new insights into microevolution, hybrid incompatibility, and epistasis. Genome Res 2023; 33:557-571. [PMID: 37147111 PMCID: PMC10234306 DOI: 10.1101/gr.277434.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
Because of diverged adaptative phenotypes, fish species of the genus Xiphophorus have contributed to a wide range of research for a century. Existing Xiphophorus genome assemblies are not at the chromosomal level and are prone to sequence gaps, thus hindering advancement of the intra- and inter-species differences for evolutionary, comparative, and translational biomedical studies. Herein, we assembled high-quality chromosome-level genome assemblies for three distantly related Xiphophorus species, namely, X. maculatus, X. couchianus, and X. hellerii Our overall goal is to precisely assess microevolutionary processes in the clade to ascertain molecular events that led to the divergence of the Xiphophorus species and to progress understanding of genetic incompatibility to disease. In particular, we measured intra- and inter-species divergence and assessed gene expression dysregulation in reciprocal interspecies hybrids among the three species. We found expanded gene families and positively selected genes associated with live bearing, a special mode of reproduction. We also found positively selected gene families are significantly enriched in nonpolymorphic transposable elements, suggesting the dispersal of these nonpolymorphic transposable elements has accompanied the evolution of the genes, possibly by incorporating new regulatory elements in support of the Britten-Davidson hypothesis. We characterized inter-specific polymorphisms, structural variants, and polymorphic transposable element insertions and assessed their association to interspecies hybridization-induced gene expression dysregulation related to specific disease states in humans.
Collapse
Affiliation(s)
- Yuan Lu
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA;
| | - Edward Rice
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Bond Life Sciences Center, Columbia, Missouri 65201, USA
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | - Susanne Kneitz
- Biochemistry and Cell Biology, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Mikki Boswell
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Kremitzki Milin
- McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Ronald B Walter
- Department of Life Sciences, Texas A&M University, Corpus Christi, Texas 78412, USA
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
- Developmental Biochemistry, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
| | - Wesley C Warren
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Bond Life Sciences Center, Columbia, Missouri 65201, USA
| |
Collapse
|
5
|
Harmon ER, Liu Y, Shamkhalichenar H, Browning V, Savage M, Tiersch TR, Monroe WT. An Open-Hardware Insemination Device for Small-Bodied Live-Bearing Fishes to Support Development and Use of Germplasm Repositories. Animals (Basel) 2022; 12:961. [PMID: 35454209 PMCID: PMC9032428 DOI: 10.3390/ani12080961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Small-bodied live-bearing fishes attract broad attention because of their importance in biomedical research and critical conservation status in natural habitats. Artificial insemination is an essential process to establish hybrid lines and for the operation of sperm repositories. The existing mouth-pipetting technique for artificial insemination of live-bearing fishes has not been substantially upgraded since the first implementation in the 1950s. The goal of this work was to develop a standardized artificial inseminator device (SAID) to address issues routinely encountered in insemination by mouth-pipetting, including lack of reproducibility among different users, difficulty in training, and large unreportable variation in sample volume and pressure during insemination. Prototypes of the SAID were designed as relatively inexpensive ( 0.99) between the piston position and volume. Pressure generation from eight mouth-pipetting operators and SAID prototypes were assessed by pressure sensors. The pressure control by SAID was superior to that produced by mouth-pipetting, yielding lower pressures (31−483 Pa) and smaller variations (standard deviation <11 Pa). These pressures were sufficient to deliver 1−5 μL of fluid into female reproductive tracts yet low enough to avoid physical injury to fish. Community-level enhancements of the SAID prototype could enable standardized insemination with minimal training and facilitate the participation of research communities in the use of cryopreserved genetic resources.
Collapse
Affiliation(s)
- Elise R. Harmon
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (E.R.H.); (Y.L.); (V.B.)
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA; (H.S.); (T.R.T.)
| | - Yue Liu
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (E.R.H.); (Y.L.); (V.B.)
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA; (H.S.); (T.R.T.)
| | - Hamed Shamkhalichenar
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA; (H.S.); (T.R.T.)
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Valentino Browning
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (E.R.H.); (Y.L.); (V.B.)
| | - Markita Savage
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA;
| | - Terrence R. Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA; (H.S.); (T.R.T.)
| | - William Todd Monroe
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (E.R.H.); (Y.L.); (V.B.)
| |
Collapse
|
6
|
Speer RM, Meaza I, Toyoda JH, Lu Y, Xu Q, Walter RB, Kong M, Lu H, Kouokam JC, Wise JP. Particulate hexavalent chromium alters microRNAs in human lung cells that target key carcinogenic pathways. Toxicol Appl Pharmacol 2022; 438:115890. [PMID: 35101437 PMCID: PMC8938933 DOI: 10.1016/j.taap.2022.115890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a global environmental pollutant and human lung carcinogen. However, the mechanisms of Cr(VI) carcinogenesis are not well defined. Cr(VI)-altered gene expression has been reported in the literature and is implicated in numerous mechanisms of Cr(VI) carcinogenesis. MicroRNAs (miRNAs) play a key role in controlling gene expression and are associated with carcinogenic mechanisms. To date no studies have evaluated global changes in miRNA expression in human cells after Cr(VI) exposure. We used RNA sequencing to evaluate how a particulate Cr(VI) compound (zinc chromate), the most potent form of Cr(VI), alters global miRNA expression after acute (24 h) or prolonged (72 and 120 h) exposure to 0.1, 0.2 and 0.3 μg/cm2 zinc chromate in an immortalized, non-cancerous human lung cell line (WTHBF-6). Particulate Cr(VI) significantly affected expression of miRNAs at all time points and concentrations tested. We also found the number of significantly downregulated miRNAs increased in a time- and concentration-dependent manner and many miRNAs were upregulated after 24 h exposure at the intermediate concentration tested. Pathway analyses of the differentially expressed miRNAs predicted miRNAs target pathways of Cr(VI) carcinogenesis in a time- and concentration-dependent manner. These data are the first to evaluate global changes in miRNA expression in human lung cells after Cr(VI) exposure and indicate miRNAs may play a key role in pathways of Cr(VI) carcinogenesis.
Collapse
Affiliation(s)
- Rachel M. Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - Jennifer H. Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - Yuan Lu
- Xiphophorus Genetic Stock Center, Texas State University, 601 University Dr. San Marcos, TX, USA
| | - Qian Xu
- Department of Bioinformatics and Biostatistics, University of Louisville, 485 E. Gray St., Louisville, KY, USA
| | - Ronald B. Walter
- Xiphophorus Genetic Stock Center, Texas State University, 601 University Dr. San Marcos, TX, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville, 485 E. Gray St., Louisville, KY, USA
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - J. Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA.
| |
Collapse
|
7
|
Zerulla TC, Stoddard PK. The Biology of Polymorphic Melanic Side-Spotting Patterns in Poeciliid Fishes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.608289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanin-based color patterns are an emerging model for studying molecular and evolutionary mechanisms driving phenotypic correlations. Extensive literature exists on color patterns and their correlated traits in the family Poeciliidae, indicating that these fishes are tractable models. We review the biology of polymorphic melanic side-spotting patterns characterized by macromelanophores forming irregular spotted patterns across fishes’ flanks. These patterns are present in the generaGambusia, Limia, Phalloceros, Poecilia, andXiphophorus. Their presence is controlled by dominant genes on autosomes or sex chromosomes. Variation in expression is under polygenic control; however, these genes’ identities are still largely unknown. In someGambusia holbrookiandPoecilia latipinna, expression is dependent on low temperature exposure, but underlying molecular mechanisms are unknown. Spotted fish develop melanoma in rare cases and are a well-developed model for melanoma research. Little is known about other physiological correlates except that spottedG. holbrookimales exhibit higher basal cortisol levels than unspotted males and that metabolic rate does not differ between morphs in someXiphophorusspecies. Behavioral differences between morphs are widespread, but specific to population, species, and social context. SpottedG. holbrookimales appear to be more social and more dominant. Juvenile spottedG. holbrookihave lower behavioral flexibility, and spottedX. variatusexhibit greater stress resistance. Findings conflict on whether morphs differ in sexual behavior and in sexual selection by females. Melanic side-spotting patterns are uncommon (<30%) in populations, although extreme high-frequency populations exist. This low frequency is surprising for dominant genes, indicating that a variety of selective pressures influence both these patterns and their correlated traits. Little is known about reproductive life history traits. SpottedG. holbrookiare larger and have higher survival when uncommon, but underlying mechanisms remain unknown. Spotted morphs appear to have a strong selective advantage during predation. Predators prefer to attack and consume unspotted morphs; however, this preference disappears when spottedG. holbrookimales are common, indicating negative frequency-dependent selection. Spotted morphs are preferred socially under turbid conditions, but other environmental factors that shape phenotypic correlations and morph fitness have not been studied. Finally, we present questions for future studies on melanic side-spotting patterns.
Collapse
|
8
|
Lu Y, Boswell M, Boswell W, Salinas RY, Savage M, Reyes J, Walter S, Marks R, Gonzalez T, Medrano G, Warren WC, Schartl M, Walter RB. Global assessment of organ specific basal gene expression over a diurnal cycle with analyses of gene copies exhibiting cyclic expression patterns. BMC Genomics 2020; 21:787. [PMID: 33176680 PMCID: PMC7659085 DOI: 10.1186/s12864-020-07202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/28/2020] [Indexed: 11/25/2022] Open
Abstract
Background Studying functional divergences between paralogs that originated from genome duplication is a significant topic in investigating molecular evolution. Genes that exhibit basal level cyclic expression patterns including circadian and light responsive genes are important physiological regulators. Temporal shifts in basal gene expression patterns are important factors to be considered when studying genetic functions. However, adequate efforts have not been applied to studying basal gene expression variation on a global scale to establish transcriptional activity baselines for each organ. Furthermore, the investigation of cyclic expression pattern comparisons between genome duplication created paralogs, and potential functional divergence between them has been neglected. To address these questions, we utilized a teleost fish species, Xiphophorus maculatus, and profiled gene expression within 9 organs at 3-h intervals throughout a 24-h diurnal period. Results Our results showed 1.3–21.9% of genes in different organs exhibited cyclic expression patterns, with eye showing the highest fraction of cycling genes while gonads yielded the lowest. A majority of the duplicated gene pairs exhibited divergences in their basal level expression patterns wherein only one paralog exhibited an oscillating expression pattern, or both paralogs exhibit oscillating expression patterns, but each gene duplicate showed a different peak expression time, and/or in different organs. Conclusions These observations suggest cyclic genes experienced significant sub-, neo-, or non-functionalization following the teleost genome duplication event. In addition, we developed a customized, web-accessible, gene expression browser to facilitate data mining and data visualization for the scientific community.
Collapse
Affiliation(s)
- Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA.
| | - Mikki Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Raquel Ybanez Salinas
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA.,The University of Texas MD Anderson Cancer Center, Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Markita Savage
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Jose Reyes
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Sean Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Rebecca Marks
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Trevor Gonzalez
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Geraldo Medrano
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Wesley C Warren
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA.,Developmental Biochemistry, Theodor-Boveri-Institute, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Ronald B Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
9
|
Abstract
The Bateson–Dobzhansky–Muller (BDM) model describes negative epistatic interactions that occur between genes with a different evolutionary history to account for hybrid incompatibility and is a central theory explaining genetic mechanisms underlying speciation. Since the early 1900 s when the BDM model was forwarded examples of BDM incompatibility have been described in only a few nonvertebrate cases. This study reports the only vertebrate system, with clearly defined interacting loci, that supports the BDM model. In addition, this study also poses that tumorigenesis serves as a novel mechanism that accounts for postzygotic isolation. Mixing genomes of different species by hybridization can disrupt species-specific genetic interactions that were adapted and fixed within each species population. Such disruption can predispose the hybrids to abnormalities and disease that decrease the overall fitness of the hybrids and is therefore named as hybrid incompatibility. Interspecies hybridization between southern platyfish and green swordtails leads to lethal melanocyte tumorigenesis. This occurs in hybrids with tumor incidence following progeny ratio that is consistent with two-locus interaction, suggesting melanoma development is a result of negative epistasis. Such observations make Xiphophorus one of the only two vertebrate hybrid incompatibility examples in which interacting genes have been identified. One of the two interacting loci has been characterized as a mutant epidermal growth factor receptor. However, the other locus has not been identified despite over five decades of active research. Here we report the localization of the melanoma regulatory locus to a single gene, rab3d, which shows all expected features of the long-sought oncogene interacting locus. Our findings provide insights into the role of egfr regulation in regard to cancer etiology. Finally, they provide a molecular explainable example of hybrid incompatibility.
Collapse
|
10
|
Lu Y, Olivas TJ, Boswell M, Boswell W, Warren WC, Schartl M, Walter RB. Intra-Strain Genetic Variation of Platyfish ( Xiphophorus maculatus) Strains Determines Tumorigenic Trajectory. Front Genet 2020; 11:562594. [PMID: 33133148 PMCID: PMC7573281 DOI: 10.3389/fgene.2020.562594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
Xiphophorus interspecies hybrids represent a valuable model system to study heritable tumorigenesis, and the only model system that exhibits both spontaneous and inducible tumors. Types of tumorigenesis depend on the specific pedigree of the parental species, X. maculatus, utilized to produce interspecies hybrids. Although the ancestors of the two currently used X. maculatus parental lines, Jp163 A and Jp163 B, were originally siblings produced by the same mother, backcross interspecies hybrid progeny between X. hellerii and X. maculatus Jp163 A develop spontaneous melanoma initiating at the dorsal fin due to segregation of an oncogene and a regulator encoded by the X. maculatus genome, while the backcross hybrid progeny with X. hellerii or X. couchianus and Jp163 B exhibit melanoma on the flanks of their bodies, especially after treatment with ultraviolet light. Therefore, dissecting the genetic differences between these two closely related lines may lead to better understanding of functional molecular differences associated with tumorigenic mechanisms. For this purpose, comparative genomic analyses were undertaken to establish genetic variants between these two X. maculatus lines. Surprisingly, given the heritage of these two fish lines, we found genetic variants are clustered together in select chromosomal regions. Among these variants are non-synonymous mutations located in 381 genes. The non-random distribution of genetic variants between these two may highlight ancestral chromosomal recombination patterns that became fixed during subsequent inbreeding. Employing comparative transcriptomics, we also determined differences in the skin transcriptional landscape between the two lines. The genetic differences observed are associated with pathways highlighting fundamental cellular functions including inter-cellular and microenvironment-cellular interactions, and DNA repair. These results collectively lead to the conclusion that diverged functional genetic baselines are present between Jp163 A and B strains. Further, disruption of these fixed genetic baselines in the hybrids may give rise to spontaneous or inducible mechanisms of tumorigenesis.
Collapse
Affiliation(s)
- Yuan Lu
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, United States
| | - Taryn J Olivas
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Mikki Boswell
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, United States
| | - William Boswell
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, United States
| | - Wes C Warren
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, United States.,Developmental Biochemistry, Theodor-Boveri-Institute, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Ronald B Walter
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, United States
| |
Collapse
|
11
|
Zhou Y, Zhang X, Xu Q, Yan J, Yu F, Wang F, Xiao J, Luo Y, Zhong H. Nonadditive and allele-specific expression of insulin-like growth factor 1 in Nile tilapia (Oreochromis niloticus, ♀) × blue tilapia (O. aureus, ♂) hybrids. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:93-100. [PMID: 30898546 DOI: 10.1016/j.cbpb.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 11/18/2022]
Abstract
Hybrid Nile tilapia (Oreochromis niloticus, ♀) × blue tilapia (O. aureus, ♂) is a widely cultured tilapia variety due to its growth vigor compared to the parent species. As a peptide hormone, insulin-like growth factor 1 (IGF-1) plays a critical role in regulating somatic growth. The present study focuses on the expression characteristics of IGF-1 in hybrid tilapia. The cloned complete open reading frame of IGF-1 in hybrid tilapia is 549 bp in length, encoding a protein of 182 amino acids. The deduced protein is highly similar to that of Nile tilapia and blue tilapia. IGF-1 was found to be primarily expressed in the liver and muscle in the hybrid; lower expression levels were found in other tissues such as the intestine, spleen, and head-kidney. Increased mRNA expression was observed in the liver and muscle of the hybrid compared to Nile tilapia and blue tilapia, indicating a nonadditive expression pattern in the hybrid. An IGF-1 SNP site (397 site: C in Nile tilapia, G in blue tilapia) for differentiating the Nile tilapia or blue tilapia subgenome in hybrids was identified. Pyrosequencing analysis of the liver transcriptome indicated that most of the hybrids (9 of 10 individuals) predominantly expressed the G allele, demonstrating bias of the blue tilapia subgenome. The present study provides novel data indicating, for the first time, overall gene expression of IGF-1 and allele-specific expression in hybrid tilapia.
Collapse
Affiliation(s)
- Yi Zhou
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Xiaojin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China; Key Laboratory of Aquatic Genetic Resources and Utilization, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410017, China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410017, China
| | - Fan Yu
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fenghua Wang
- Sports Biochemistry Laboratory, Institute of Physical Education, Xinjiang Normal University, Urumqi 830054, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China; Key Laboratory of Aquatic Genetic Resources and Utilization, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China.
| |
Collapse
|
12
|
Gene expression variation and parental allele inheritance in a Xiphophorus interspecies hybridization model. PLoS Genet 2018; 14:e1007875. [PMID: 30586357 PMCID: PMC6324826 DOI: 10.1371/journal.pgen.1007875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/08/2019] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
Understanding the genetic mechanisms underlying segregation of phenotypic variation through successive generations is important for understanding physiological changes and disease risk. Tracing the etiology of variation in gene expression enables identification of genetic interactions, and may uncover molecular mechanisms leading to the phenotypic expression of a trait, especially when utilizing model organisms that have well-defined genetic lineages. There are a plethora of studies that describe relationships between gene expression and genotype, however, the idea that global variations in gene expression are also controlled by genotype remains novel. Despite the identification of loci that control gene expression variation, the global understanding of how genome constitution affects trait variability is unknown. To study this question, we utilized Xiphophorus fish of different, but tractable genetic backgrounds (inbred, F1 interspecies hybrids, and backcross hybrid progeny), and measured each individual’s gene expression concurrent with the degrees of inter-individual expression variation. We found, (a) F1 interspecies hybrids exhibited less variability than inbred animals, indicting gene expression variation is not affected by the fraction of heterozygous loci within an individual genome, and (b), that mixing genotypes in backcross populations led to higher levels of gene expression variability, supporting the idea that expression variability is caused by heterogeneity of genotypes of cis or trans loci. In conclusion, heterogeneity of genotype, introduced by inheritance of different alleles, accounts for the largest effects on global phenotypical variability. Phenotypical variability is a multi-factorial phenomenon. Although it has been shown that inheriting certain gene is associated with lower phenotypical variability, how genome complexity affect phenotypical variability is still unclear. To study this question, we used inbred Xiphophorus fish, backcross interspecies hybrids, and F1 interspecies hybrids between select Xiphophorus species to model genetic composition with minimum, medium, and maximum heterozygosity respectively, and measured their global gene expression variability. We found gene expression variation is not affected by the percentage of heterozygous loci in individual genome, but instead related to heterogeneity of genotype at local or remote loci.
Collapse
|
13
|
Regneri J, Klotz B, Wilde B, Kottler VA, Hausmann M, Kneitz S, Regensburger M, Maurus K, Götz R, Lu Y, Walter RB, Herpin A, Schartl M. Analysis of the putative tumor suppressor gene cdkn2ab in pigment cells and melanoma of Xiphophorus and medaka. Pigment Cell Melanoma Res 2018; 32:248-258. [PMID: 30117276 DOI: 10.1111/pcmr.12729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
In humans, the CDKN2A locus encodes two transcripts, INK4A and ARF. Inactivation of either one by mutations or epigenetic changes is a frequent signature of malignant melanoma and one of the most relevant entry points for melanomagenesis. To analyze whether cdkn2ab, the fish ortholog of CDKN2A, has a similar function as its human counterpart, we studied its action in fish models for human melanoma. Overexpression of cdkn2ab in a Xiphophorus melanoma cell line led to decreased proliferation and induction of a senescence-like phenotype, indicating a melanoma-suppressive function analogous to mammals. Coexpression of Xiphophorus cdkn2ab in medaka transgenic for the mitfa:xmrk melanoma-inducing gene resulted in full suppression of melanoma development, whereas CRISPR/Cas9 knockout of cdkn2ab resulted in strongly enhanced tumor growth. In summary, this provides the first functional evidence that cdkn2ab acts as a potent tumor suppressor gene in fish melanoma models.
Collapse
Affiliation(s)
- Janine Regneri
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Barbara Klotz
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Brigitta Wilde
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Verena A Kottler
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Michael Hausmann
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | | | - Katja Maurus
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Ralph Götz
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Yuan Lu
- Department of Chemistry & Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas
| | - Ronald B Walter
- Department of Chemistry & Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas
| | - Amaury Herpin
- INRA, Fish Physiology and Genomics Institute (INRA-LPGP), Sexual Differentiation and Oogenesis Group (SDOG), Campus de Beaulieu, Rennes Cedex, France
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany.,Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
14
|
Lu Y, Boswell M, Boswell W, Kneitz S, Hausmann M, Klotz B, Regneri J, Savage M, Amores A, Postlethwait J, Warren W, Schartl M, Walter R. Comparison of Xiphophorus and human melanoma transcriptomes reveals conserved pathway interactions. Pigment Cell Melanoma Res 2018; 31:496-508. [PMID: 29316274 PMCID: PMC6013346 DOI: 10.1111/pcmr.12686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/23/2017] [Indexed: 12/14/2022]
Abstract
Comparative analysis of human and animal model melanomas can uncover conserved pathways and genetic changes that are relevant for the biology of cancer cells. Spontaneous melanoma in Xiphophorus interspecies backcross hybrid progeny may be informative in identifying genes and functional pathways that are similarly related to melanoma development in all vertebrates, including humans. To assess functional pathways involved in the Xiphophorus melanoma, we performed gene expression profiling of the melanomas produced in interspecies BC1 and successive backcross generations (i.e., BC5 ) of the cross: X. hellerii × [X. maculatus Jp 163 A × X. hellerii]. Using RNA-Seq, we identified genes that are transcriptionally co-expressed with the driver oncogene, xmrk. We determined functional pathways in the fish melanoma that are also present in human melanoma cohorts that may be related to dedifferentiation based on the expression levels of pigmentation genes. Shared pathways between human and Xiphophorus melanomas are related to inflammation, cell migration, cell proliferation, pigmentation, cancer development, and metastasis. Our results suggest xmrk co-expressed genes are associated with dedifferentiation and highlight these signaling pathways as playing important roles in melanomagenesis.
Collapse
Affiliation(s)
- Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Mikki Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Susanne Kneitz
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
| | - Michael Hausmann
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
| | - Barbara Klotz
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
| | - Janine Regneri
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
| | - Markita Savage
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Wesley Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Manfred Schartl
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
- Texas A&M Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, USA
| | - Ronald Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| |
Collapse
|
15
|
Variant calling from RNA-seq data of the brain transcriptome of pigs and its application for allele-specific expression and imprinting analysis. Gene 2018; 641:367-375. [DOI: 10.1016/j.gene.2017.10.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
|