1
|
Li C, Wang K, Fang J, Qin L, Ling Q, Yu Y. TRIM25 activates Wnt/β-catenin signalling by destabilising MAT2A mRNA to drive thoracic aortic aneurysm development. Hum Mol Genet 2024; 33:1890-1899. [PMID: 39216871 DOI: 10.1093/hmg/ddae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
This study explored the roles of methionine adenosyltransferase 2A (MAT2A) and tripartite motif containing 25 (TRIM25) in the progression of thoracic aortic aneurysm (TAA). The TAA model was established based on the β-aminopropionitrile method. The effects of MAT2A on thoracic aortic lesions and molecular levels were analyzed by several pathological staining assays (hematoxylin-eosin, Verhoeff-Van Gieson, TUNEL) and molecular biology experiments (qRT-PCR, Western blot). Angiotensin II (Ang-II) was used to induce injury in vascular smooth muscle cells (VSMCs) in vitro. The effects of MAT2A, shMAT2A, shTRIM25 and/or Wnt inhibitor (IWR-1) on the viability, apoptosis and protein expressions of VSMCs were examined by CCK-8, Annexin V-FITC/PI and Western blot assays. In TAA mice, overexpression of MAT2A alleviated thoracic aortic injury, inhibited the aberrant expressions of aortic contractile proteins and dedifferentiation markers, and blocked the activation of Wnt/β-catenin pathway. In Ang-II-induced VSMCs, up-regulation of MAT2A increased cellular activity and repressed the expression of β-catenin protein. TRIM25 knockdown promoted activity of VSMCs, inhibited apoptosis, and blocked the Wnt/β-catenin pathway activation by binding to MAT2A. IWR-1 partially counteracted the regulatory effects of shMAT2A. Collectively, TRIM25 destabilises the mRNA of MAT2A to activate Wnt/β-catenin signaling and ultimately exacerbate TAA injury.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Mice
- Wnt Signaling Pathway/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Methionine Adenosyltransferase/genetics
- Methionine Adenosyltransferase/metabolism
- Myocytes, Smooth Muscle/metabolism
- Apoptosis/genetics
- beta Catenin/metabolism
- beta Catenin/genetics
- Humans
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Disease Models, Animal
- Male
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Angiotensin II/pharmacology
Collapse
Affiliation(s)
- Chaojie Li
- Department of Cardiothoracic Surgery, People's Hospital of Xiangzhou District, No. 178 Lanpu Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Kan Wang
- Department of Cardiothoracic Surgery, the Second Clinical College, Guangzhou University of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
- Applicants for Equivalent PhD, Guangzhou University of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Jian Fang
- Department of Anesthesiology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, No. 208 Yuehua Road, Zhuhai, Guangdong, 519000, China
| | - Lin Qin
- Department of Ophthalmology, the Second Clinical College, Guangzhou University of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Qiong Ling
- Department of Anesthesiology, the Second Clinical College, Guangzhou University of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Yu Yu
- Department of Health Examination, Zhuhai Women and Children's Hospital, No. 543 Ningxi Road, Zhuhai City, Guangdong, 519000, China
| |
Collapse
|
2
|
Shen S, Liu R, Huang J, Sun Y, Tan Q, Luo Q, Liu R. MAT1A activation of glycolysis to promote NSCLC progression depends on stabilizing CCND1. Cell Death Dis 2024; 15:768. [PMID: 39438468 PMCID: PMC11496809 DOI: 10.1038/s41419-024-07113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Non-small cell lung cancer (NSCLC) remains a cause for concern as the leading cause of cancer-related death worldwide. Amidst ongoing debates on the role and mechanisms of methionine adenosyltransferase 1A (MAT1A) in cancer, our study sheds light on its significance in NSCLC. Leveraging TCGA database and immunohistochemical staining, we systematically analyzed MAT1A expression in NSCLC, uncovering its marked upregulation. To unravel the functional and mechanistic underpinnings, we implemented stable knockdown of MAT1A in NSCLC cell lines. Our findings converged to demonstrate that suppression of MAT1A expression effectively impeded the proliferation and migratory capabilities of NSCLC cells, while concurrently enhancing apoptosis. Mechanistically, we discovered that MAT1A depletion accelerated the degradation of CCND1, a key cell cycle regulator, through S-phase kinase-associated protein 2 (SKP2)-mediated ubiquitination. Notably, CCND1 emerged as a crucial MAT1A partner, jointly orchestrating glycolytic metabolism in NSCLC cells. This intricate interplay suggests that MAT1A promotes NSCLC progression by safeguarding CCND1 protein stability and activating glycolytic pathways, thereby sustaining tumorigenesis. In summary, our study not only identifies MAT1A as a prognostic marker for poor survival in NSCLC patients but also elucidates its mechanistic contributions to cancer progression. These findings pave the way for the development of targeted therapies aimed at disrupting the deleterious MAT1A-CCND1-glycolysis axis in NSCLC.
Collapse
Affiliation(s)
- Shengping Shen
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Ruili Liu
- Department of Stomatology, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, PR China
| | - Jiazheng Huang
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Yingjia Sun
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Qiang Tan
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Qingquan Luo
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Ruijun Liu
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
3
|
Gao Q, Sun Z, Fang D. Integrins in human hepatocellular carcinoma tumorigenesis and therapy. Chin Med J (Engl) 2023; 136:253-268. [PMID: 36848180 PMCID: PMC10106235 DOI: 10.1097/cm9.0000000000002459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Integrins are a family of transmembrane receptors that connect the extracellular matrix and actin skeleton, which mediate cell adhesion, migration, signal transduction, and gene transcription. As a bi-directional signaling molecule, integrins can modulate many aspects of tumorigenesis, including tumor growth, invasion, angiogenesis, metastasis, and therapeutic resistance. Therefore, integrins have a great potential as antitumor therapeutic targets. In this review, we summarize the recent reports of integrins in human hepatocellular carcinoma (HCC), focusing on the abnormal expression, activation, and signaling of integrins in cancer cells as well as their roles in other cells in the tumor microenvironment. We also discuss the regulation and functions of integrins in hepatitis B virus-related HCC. Finally, we update the clinical and preclinical studies of integrin-related drugs in the treatment of HCC.
Collapse
Affiliation(s)
- Qiong Gao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhaolin Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Guerrero L, Paradela A, Corrales FJ. Targeted Proteomics for Monitoring One-Carbon Metabolism in Liver Diseases. Metabolites 2022; 12:metabo12090779. [PMID: 36144184 PMCID: PMC9501948 DOI: 10.3390/metabo12090779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Liver diseases cause approximately 2 million deaths per year worldwide and had an increasing incidence during the last decade. Risk factors for liver diseases include alcohol consumption, obesity, diabetes, the intake of hepatotoxic substances like aflatoxin, viral infection, and genetic determinants. Liver cancer is the sixth most prevalent cancer and the third in mortality (second in males). The low survival rate (less than 20% in 5 years) is partially explained by the late diagnosis, which remarks the need for new early molecular biomarkers. One-carbon metabolism integrates folate and methionine cycles and participates in essential cell processes such as redox homeostasis maintenance and the regulation of methylation reactions through the production of intermediate metabolites such as cysteine and S-Adenosylmethionine. One-carbon metabolism has a tissue specific configuration, and in the liver, the participating enzymes are abundantly expressed—a requirement to maintain hepatocyte differentiation. Targeted proteomics studies have revealed significant differences in hepatocellular carcinoma and cirrhosis, suggesting that monitoring one-carbon metabolism enzymes can be useful for stratification of liver disease patients and to develop precision medicine strategies for their clinical management. Here, reprogramming of one-carbon metabolism in liver diseases is described and the role of mass spectrometry to follow-up these alterations is discussed.
Collapse
Affiliation(s)
- Laura Guerrero
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - Fernando J. Corrales
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-585-46-96
| |
Collapse
|
5
|
Dietary folate drives methionine metabolism to promote cancer development by stabilizing MAT IIA. Signal Transduct Target Ther 2022; 7:192. [PMID: 35729157 PMCID: PMC9213445 DOI: 10.1038/s41392-022-01017-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 12/30/2022] Open
Abstract
Folic acid, served as dietary supplement, is closely linked to one-carbon metabolism and methionine metabolism. Previous clinical evidence indicated that folic acid supplementation displays dual effect on cancer development, promoting or suppressing tumor formation and progression. However, the underlying mechanism remains to be uncovered. Here, we report that high-folate diet significantly promotes cancer development in mice with hepatocellular carcinoma (HCC) induced by DEN/high-fat diet (HFD), simultaneously with increased expression of methionine adenosyltransferase 2A (gene name, MAT2A; protein name, MATIIα), the key enzyme in methionine metabolism, and acceleration of methionine cycle in cancer tissues. In contrast, folate-free diet reduces MATIIα expression and impedes HFD-induced HCC development. Notably, methionine metabolism is dynamically reprogrammed with valosin-containing protein p97/p47 complex-interacting protein (VCIP135) which functions as a deubiquitylating enzyme to bind and stabilize MATIIα in response to folic acid signal. Consistently, upregulation of MATIIα expression is positively correlated with increased VCIP135 protein level in human HCC tissues compared to adjacent tissues. Furthermore, liver-specific knockout of Mat2a remarkably abolishes the advocating effect of folic acid on HFD-induced HCC, demonstrating that the effect of high or free folate-diet on HFD-induced HCC relies on Mat2a. Moreover, folate and multiple intermediate metabolites in one-carbon metabolism are significantly decreased in vivo and in vitro upon Mat2a deletion. Together, folate promotes the integration of methionine and one-carbon metabolism, contributing to HCC development via hijacking MATIIα metabolic pathway. This study provides insight into folate-promoted cancer development, strongly recommending the tailor-made folate supplement guideline for both sub-healthy populations and patients with cancer expressing high level of MATIIα expression.
Collapse
|
6
|
Fan C, Kam S, Ramadori P. Metabolism-Associated Epigenetic and Immunoepigenetic Reprogramming in Liver Cancer. Cancers (Basel) 2021; 13:cancers13205250. [PMID: 34680398 PMCID: PMC8534280 DOI: 10.3390/cancers13205250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic reprogramming and epigenetic changes have been characterized as hallmarks of liver cancer. Independently of etiology, oncogenic pathways as well as the availability of different energetic substrates critically influence cellular metabolism, and the resulting perturbations often cause aberrant epigenetic alterations, not only in cancer cells but also in the hepatic tumor microenvironment. Metabolic intermediates serve as crucial substrates for various epigenetic modulations, from post-translational modification of histones to DNA methylation. In turn, epigenetic changes can alter the expression of metabolic genes supporting on the one hand, the increased energetic demand of cancer cells and, on the other hand, influence the activity of tumor-associated immune cell populations. In this review, we will illustrate the most recent findings about metabolic reprogramming in liver cancer. We will focus on the metabolic changes characterizing the tumor microenvironment and on how these alterations impact on epigenetic mechanisms involved in the malignant progression. Furthermore, we will report our current knowledge about the influence of cancer-specific metabolites on epigenetic reprogramming of immune cells and we will highlight how this favors a tumor-permissive immune environment. Finally, we will review the current strategies to target metabolic and epigenetic pathways and their therapeutic potential in liver cancer, alone or in combinatorial approaches.
Collapse
|
7
|
Yang M, Tan W, Yang X, Zhuo J, Lin Z, Cen B, Lian Z, Li H, Lu D, Wei X, Zheng S, Xu X. Homocysteine: A novel prognostic biomarker in liver transplantation for alpha-fetoprotein- negative hepatocellular carcinoma. Cancer Biomark 2020; 29:197-206. [PMID: 32623388 DOI: 10.3233/cbm-201545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Precise recipient selection optimizes the prognosis of liver transplantation (LT) for hepatocellular carcinoma (HCC). Alpha-fetoprotein (AFP) is the most commonly used biomarker for diagnosis and prognosis of HCC in the clinical context. As a crucial molecule in methionine cycle, homocysteine (Hcy) level has been proved to be related to HCC progression and metastasis. OBJECTIVE We aimed to explore the prognostic capacity of pre-transplant serum Hcy level in LT for HCC. METHODS This study retrospectively enrolled 161 HCC patients who had underwent LT from donation after cardiac death (DCD) in the First Affiliated Hospital of Zhejiang University from 2015.01.01 to 2018.09.01. Pre-transplant serum Hcy level was incorporated into statistical analysis together with other clinical parameters and pathological features. RESULTS From an overall perspective, significant difference was observed in Hcy level between recurrence (n= 61) and non-recurrence group (n= 100) though subsequent analysis showed unsatisfactory predicting performance. In the whole cohort, multivariate analysis showed that lnAFP (p= 0.010) and Milan criteria (MC, p< 0.001) were independent risk factors of HCC recurrence after LT. MA score based on MC and lnAFP performed well in predicting post-LT tumor recurrence with the AUROC at 0.836 (p< 0.001) and 3-year recurrence-free survival rate at 96.8% (p< 0.001) in the low risk group (n= 69). According to the clinical practice, serum concentration lower than 20 μg/L is considered as normal range of AFP. Elevated pre-transplant serum AFP (> 20 μg/L) predicts high HCC recurrence after LT. We further divided the 161 recipients into AFP- group (n= 77, AFP ⩽ 20 μg/L) and AFP+ group (n= 84, AFP > 20 μg/L). MA score was still well presented in the AFP+ group and the AUROC for tumor recurrence was 0.823 (p< 0.001), whereas the predicting accuracy was reduced in AFP- group (AUROC: 0.754, P< 0.001). After subsequent analysis, we found that elevated pre-transplant Hcy level (> 12.75 μmol/L) predicted increased tumor recurrence risk in AFP- group. The 3-year recurrence-free survival rates were 92.0% and 53.7% (p< 0.001) in low Hcy subgroup (n= 40) and high Hcy subgroup (n= 37) respectively. Multivariate analysis showed that Hcy (p= 0.040) and Milan criteria (p= 0.003) were independent risk factors for post-transplant tumor recurrence in AFP- group. Further combination of Hcy level and Milan criteria identified a subgroup of AFP- recipients with acceptable outcomes even though beyond Milan criteria (3-year recurrence-free survival rate: 77.7%, p< 0.001). CONCLUSION As a classic predictor in HCC prognosis, AFP performed well in our study cohort when combined with Milan criteria. Homocysteine was an effective prognostic biomarker in LT for AFP- hepatocellular carcinoma. In recipients exceeding Milan criteria, acceptable post-transplant outcome could be seen in those with low Hcy and AFP level.
Collapse
Affiliation(s)
- Modan Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Winyen Tan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Zuyuan Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Beini Cen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Zhengxing Lian
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Huihui Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
LINC00662 promotes hepatocellular carcinoma progression via altering genomic methylation profiles. Cell Death Differ 2020; 27:2191-2205. [PMID: 31959915 DOI: 10.1038/s41418-020-0494-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
The identification of viability-associated long noncoding RNAs (lncRNAs) is a means of uncovering therapeutic approaches for hepatocellular carcinoma (HCC). In addition, aberrant genome-wide hypomethylation has been implicated in HCC initiation and progression. However, the relationship between lncRNA dysregulation and genome-wide hypomethylation in hepatocarcinogenesis has not been fully elucidated. A novel lncRNA named LINC00662 was previously demonstrated to play a role in gastrointestinal cancer. In this study, we demonstrated that this lncRNA was correlated with survival and exhibited oncogenic properties, both in vitro and in vivo. Moreover, we determined that LINC00662 could lead to genome-wide hypomethylation and alter the genomic methylation profile by synchronously reducing the S-adenosylmethionine (SAM) level and enhancing the S-adenosylhomocysteine (SAH) level. Mechanistically, LINC00662 was determined to regulate the key enzymes influencing SAM and SAH levels, namely, methionine adenosyltransferase 1A (MAT1A) and S-adenosylhomocysteine hydrolase (AHCY), by RNA-RNA and RNA-protein interactions. In addition, we demonstrated that some SAM-dependent HCC-promoting genes could be regulated by LINC00662 by altering the methylation status of their promoters via the LINC00662-coupled axes of MAT1A/SAM and AHCY/SAH. Taken together, the results of this this study indicate that LINC00662 could be a potential biomarker for HCC therapy. More importantly, we proposed a new role of lncRNA in regulating genomic methylation to promote oncogene activation.
Collapse
|
9
|
Methionine Adenosyltransferase 1a (MAT1A) Enhances Cell Survival During Chemotherapy Treatment and is Associated with Drug Resistance in Bladder Cancer PDX Mice. Int J Mol Sci 2019; 20:ijms20204983. [PMID: 31600961 PMCID: PMC6829260 DOI: 10.3390/ijms20204983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Bladder cancer is among the top ten most common cancers, with about ~380,000 new cases and ~150,000 deaths per year worldwide. Tumor relapse following chemotherapy treatment has long been a significant challenge towards completely curing cancer. We have utilized a patient-derived bladder cancer xenograft (PDX) platform to characterize molecular mechanisms that contribute to relapse following drug treatment in advanced bladder cancer. Transcriptomic profiling of bladder cancer xenograft tumors by RNA-sequencing analysis, before and after relapse, following a 21-day cisplatin/gemcitabine drug treatment regimen identified methionine adenosyltransferase 1a (MAT1A) as one of the significantly upregulated genes following drug treatment. Survey of patient tumor sections confirmed elevated levels of MAT1A in individuals who received chemotherapy. Overexpression of MAT1A in 5637 bladder cancer cells increased tolerance to gemcitabine and stalled cell proliferation rates, suggesting MAT1A upregulation as a potential mechanism by which bladder cancer cells persist in a quiescent state to evade chemotherapy.
Collapse
|
10
|
Murray B, Barbier-Torres L, Fan W, Mato JM, Lu SC. Methionine adenosyltransferases in liver cancer. World J Gastroenterol 2019; 25:4300-4319. [PMID: 31496615 PMCID: PMC6710175 DOI: 10.3748/wjg.v25.i31.4300] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferases (MATs) are essential enzymes for life as they produce S-adenosylmethionine (SAMe), the biological methyl donor required for a plethora of reactions within the cell. Mammalian systems express two genes, MAT1A and MAT2A, which encode for MATα1 and MATα2, the catalytic subunits of the MAT isoenzymes, respectively. A third gene MAT2B, encodes a regulatory subunit known as MATβ which controls the activity of MATα2. MAT1A, which is mainly expressed in hepatocytes, maintains the differentiated state of these cells, whilst MAT2A and MAT2B are expressed in extrahepatic tissues as well as non-parenchymal cells of the liver (e.g., hepatic stellate and Kupffer cells). The biosynthesis of SAMe is impaired in patients with chronic liver disease and liver cancer due to decreased expression and inactivation of MATα1. A switch from MAT1A to MAT2A/MAT2B occurs in multiple liver diseases and during liver growth and dedifferentiation, but this change in the expression pattern of MATs results in reduced hepatic SAMe level. Decades of study have utilized the Mat1a-knockout (KO) mouse that spontaneously develops non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) to elucidate a variety of mechanisms by which MAT proteins dysregulation contributes to liver carcinogenesis. An increasing volume of work indicates that MATs have SAMe-independent functions, distinct interactomes and multiple subcellular localizations. Here we aim to provide an overview of MAT biology including genes, isoenzymes and their regulation to provide the context for understanding consequences of their dysregulation. We will highlight recent breakthroughs in the field and underscore the importance of MAT’s in liver tumorigenesis as well as their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Ben Murray
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Lucia Barbier-Torres
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Wei Fan
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - Shelly C Lu
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|