1
|
Vanisree AJ, Thamizhoviya G, Thiruvalluvan A. Targeted Metabolic Profiling in Determining the Metabolic Heterogeneity in Human Biopsies of Different Grades of Glioma. Mol Neurobiol 2024:10.1007/s12035-024-04538-1. [PMID: 39446218 DOI: 10.1007/s12035-024-04538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Gliomas are intricate tumors with numerous metabolic and genetic abnormalities contributing to their aggressive phenotypes and poor prognoses. The study aims at identifying the key molecular metabolic as well as gene expressional variations that could be used to differentiate between different grades of glioma to obtain deeper insights the about metabolic status of glioma that may serve as good candidates of diagnosis in future. In the present study, the metabolomic profiling along with clinical and expressional analyses of glioma biopsies (n = 52; patients comprising both of benign and malignant lesions) was analyzed. The biopsies were subjected to gene/protein expressional analysis using RT-PCR and western blotting and also were subjected to metabolite analyses. The results of the gene/protein expressional analysis exhibited elevated levels of carnitine palmitoyltransferase, monoglyceride lipase, human phosphofructokinase, and isocitrate dehydrogenase in higher grades of glioma when compared to those of control. Our study suggested that the metabolites and gene/protein expressional levels were found to be discriminative among the grades of glioma. The study is deemed as a provider of deeper insights that are essential for differential therapeutic approaches that specifically target the dysregulated metabolome to the benefit of patients.
Collapse
|
2
|
Zhang J, Zang X, Jiao P, Wu J, Meng W, Zhao L, Lv Z. Alterations of Ceramides, Acylcarnitines, GlyceroLPLs, and Amines in NSCLC Tissues. J Proteome Res 2024; 23:4343-4358. [PMID: 39317643 DOI: 10.1021/acs.jproteome.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Abnormal lipid metabolism plays an important role in cancer development. In this study, nontargeted lipidomic study on 230 tissue specimens from 79 nonsmall cell lung cancer (NSCLC) patients was conducted using ultraperformance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). Downregulation of sphingosine and medium-long-chain ceramides and short-medium-chain acylcarnitine, upregulation of long-chain acylcarnitine C20:0, and enhanced histamine methylation were revealed in NSCLC tissues. Compared with paired noncancerous tissues, adenocarcinoma (AC) tissues had significantly decreased levels of sphingosine, medium-long-chain ceramides (Cer d18:1/12:0 and Cer d16:1/14:0, Cer d18:0/16:0, Cer d18:1/16:0, Cer d18:2/16:0, Cer d18:2/18:0), short-medium-chain (C2-C16) acylcarnitines, LPC 20:0 and LPC 22:1, and significantly increased levels of the long-chain acylcarnitine C20:0, LPC 16:0, LPC P-16:0, LPC 20:1, LPC 20:2, glyceroPC, LPE 16:0, and LPE 18:2. In squamous cell carcinoma (SCC) tissues, sphingosine, Cer d18:2/16:0 and Cer d18:2/18:0, and short-medium-chain acylcarnitines had significantly lower levels, while long-chain acylcarnitines (C20:0, and C22:0 or C22:0 M), LPC 20:1, LPC 20:2, and N1,N12-diacetylspermine had significantly higher levels compared to controls. In AC and SCC tissues, the levels of LPG 18:0, LPG 18:1, and LPS 18:1 were significantly decreased, while the levels of ceramide-1-phosphate (C1P) d18:0/3:0 or LPE P-16:0, N1-acetylspermidine, and 1-methylhistamine were significantly increased than controls. Furthermore, an orthogonal partial least-squares-discriminant analysis (OPLS-DA) model based on a 4-lipid panel was established, showing good discrimination ability between cancerous and noncancerous tissues.
Collapse
Affiliation(s)
- Jie Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Xiaoling Zang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong 266235, P. R. China
| | - Peng Jiao
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Jiangyu Wu
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Wei Meng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Lizhen Zhao
- College of Physics, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong 266235, P. R. China
| |
Collapse
|
3
|
Sun L, Meng H, Liu T, Zhao Q, Xia M, Zhao Z, Qian Y, Cui H, Zhong X, Chai K, Tian Y, Sun Y, Zhu B, Di J, Shui G, Zhang L, Zheng J, Guo S, Liu Y. Nucleolin malonylation as a nuclear-cytosol signal exchange mechanism to drive cell proliferation in Hepatocarcinoma by enhancing AKT translation. J Biol Chem 2024; 300:107785. [PMID: 39305961 DOI: 10.1016/j.jbc.2024.107785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/18/2024] Open
Abstract
Cancer cells undergo metabolic reprogramming that is intricately linked to malignancy. Protein acylations are especially responsive to metabolic changes, influencing signal transduction pathways and fostering cell proliferation. However, as a novel type of acylations, the involvement of malonylation in cancer remains poorly understood. In this study, we observed a significant reduction in malonyl-CoA levels in hepatocellular carcinoma (HCC), which correlated with a global decrease in malonylation. Subsequent nuclear malonylome analysis unveiled nucleolin (NCL) malonylation, which was notably enhanced in HCC biopsies. we demonstrated that NCL undergoes malonylation at lysine residues 124 and 398. This modification triggers the translocation of NCL from the nucleolus to nucleoplasm and cytoplasm, binding to AKT mRNA, and promoting AKT translation in HCC. Silencing AKT expression markedly attenuated HCC cell proliferation driven by NCL malonylation. These findings collectively highlight nuclear signaling in modulating AKT expression, suggesting NCL malonylation as a novel mechanism through which cancer cells drive cell proliferation.
Collapse
Affiliation(s)
- Liang Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hanjing Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Qiong Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingyi Xia
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongjun Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuting Qian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Cui
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuefei Zhong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Keli Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bao Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
| | - Yong Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
Balonov I, Mattis M, Jarmusch S, Koletzko B, Heinrich K, Neumann J, Werner J, Angele MK, Heiliger C, Jacob S. Metabolomic profiling of upper GI malignancies in blood and tissue: a systematic review and meta-analysis. J Cancer Res Clin Oncol 2024; 150:331. [PMID: 38951269 PMCID: PMC11217139 DOI: 10.1007/s00432-024-05857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE To conduct a systematic review and meta-analysis of case-control and cohort human studies evaluating metabolite markers identified using high-throughput metabolomics techniques on esophageal cancer (EC), cancer of the gastroesophageal junction (GEJ), and gastric cancer (GC) in blood and tissue. BACKGROUND Upper gastrointestinal cancers (UGC), predominantly EC, GEJ, and GC, are malignant tumour types with high morbidity and mortality rates. Numerous studies have focused on metabolomic profiling of UGC in recent years. In this systematic review and meta-analysis, we have provided a collective summary of previous findings on metabolites and metabolomic profiling associated with EC, GEJ and GC. METHODS Following the PRISMA procedure, a systematic search of four databases (Embase, PubMed, MEDLINE, and Web of Science) for molecular epidemiologic studies on the metabolomic profiles of EC, GEJ and GC was conducted and registered at PROSPERO (CRD42023486631). The Newcastle-Ottawa Scale (NOS) was used to benchmark the risk of bias for case-controlled and cohort studies. QUADOMICS, an adaptation of the QUADAS-2 (Quality Assessment of Diagnostic Accuracy) tool, was used to rate diagnostic accuracy studies. Original articles comparing metabolite patterns between patients with and without UGC were included. Two investigators independently completed title and abstract screening, data extraction, and quality evaluation. Meta-analysis was conducted whenever possible. We used a random effects model to investigate the association between metabolite levels and UGC. RESULTS A total of 66 original studies involving 7267 patients that met the required criteria were included for review. 169 metabolites were differentially distributed in patients with UGC compared to healthy patients among 44 GC, 9 GEJ, and 25 EC studies including metabolites involved in glycolysis, anaerobic respiration, tricarboxylic acid cycle, and lipid metabolism. Phosphatidylcholines, eicosanoids, and adenosine triphosphate were among the most frequently reported lipids and metabolites of cellular respiration, while BCAA, lysine, and asparagine were among the most commonly reported amino acids. Previously identified lipid metabolites included saturated and unsaturated free fatty acids and ketones. However, the key findings across studies have been inconsistent, possibly due to limited sample sizes and the majority being hospital-based case-control analyses lacking an independent replication group. CONCLUSION Thus far, metabolomic studies have provided new opportunities for screening, etiological factors, and biomarkers for UGC, supporting the potential of applying metabolomic profiling in early cancer diagnosis. According to the results of our meta-analysis especially BCAA and TMAO as well as certain phosphatidylcholines should be implicated into the diagnostic procedure of patients with UGC. We envision that metabolomics will significantly enhance our understanding of the carcinogenesis and progression process of UGC and may eventually facilitate precise oncological and patient-tailored management of UGC.
Collapse
Affiliation(s)
- Ilja Balonov
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Minca Mattis
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Jarmusch
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Medical Center, Lindwurmstraße 4, 80337, Munich, Germany
| | - Kathrin Heinrich
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin K Angele
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian Heiliger
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sven Jacob
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
5
|
Hu N, Li H, Tao C, Xiao T, Rong W. The Role of Metabolic Reprogramming in the Tumor Immune Microenvironment: Mechanisms and Opportunities for Immunotherapy in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:5584. [PMID: 38891772 PMCID: PMC11171976 DOI: 10.3390/ijms25115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
As one of the emerging hallmarks of tumorigenesis and tumor progression, metabolic remodeling is common in the tumor microenvironment. Hepatocellular carcinoma (HCC) is the third leading cause of global tumor-related mortality, causing a series of metabolic alterations in response to nutrient availability and consumption to fulfill the demands of biosynthesis and carcinogenesis. Despite the efficacy of immunotherapy in treating HCC, the response rate remains unsatisfactory. Recently, research has focused on metabolic reprogramming and its effects on the immune state of the tumor microenvironment, and immune response rate. In this review, we delineate the metabolic reprogramming observed in HCC and its influence on the tumor immune microenvironment. We discuss strategies aimed at enhancing response rates and overcoming immune resistance through metabolic interventions, focusing on targeting glucose, lipid, or amino acid metabolism, as well as systemic regulation.
Collapse
Affiliation(s)
- Nan Hu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.H.); (H.L.); (C.T.)
| | - Haiyang Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.H.); (H.L.); (C.T.)
| | - Changcheng Tao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.H.); (H.L.); (C.T.)
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.H.); (H.L.); (C.T.)
| |
Collapse
|
6
|
Bai J, Eldridge R, Houser M, Martin M, Powell C, Sutton KS, Noh HI, Wu Y, Olson T, Konstantinidis KT, Bruner DW. Multi-omics analysis of the gut microbiome and metabolites associated with the psychoneurological symptom cluster in children with cancer receiving chemotherapy. J Transl Med 2024; 22:256. [PMID: 38461265 PMCID: PMC10924342 DOI: 10.1186/s12967-024-05066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Children with cancer receiving chemotherapy commonly report a cluster of psychoneurological symptoms (PNS), including pain, fatigue, anxiety, depression, and cognitive dysfunction. The role of the gut microbiome and its functional metabolites in PNS is rarely studied among children with cancer. This study investigated the associations between the gut microbiome-metabolome pathways and PNS in children with cancer across chemotherapy as compared to healthy children. METHODS A case-control study was conducted. Cancer cases were recruited from Children's Healthcare of Atlanta and healthy controls were recruited via flyers. Participants reported PNS using the Pediatric Patient-Reported Outcomes Measurement Information System. Data for cases were collected pre-cycle two chemotherapy (T0) and post-chemotherapy (T1), whereas data for healthy controls were collected once. Gut microbiome and its metabolites were measured using fecal specimens. Gut microbiome profiling was performed using 16S rRNA V4 sequencing, and metabolome was performed using an untargeted liquid chromatography-mass spectrometry approach. A multi-omics network integration program analyzed microbiome-metabolome pathways of PNS. RESULTS Cases (n = 21) and controls (n = 14) had mean ages of 13.2 and 13.1 years. For cases at T0, PNS were significantly associated with microbial genera (e.g., Ruminococcus, Megasphaera, and Prevotella), which were linked with carnitine shuttle (p = 0.0003), fatty acid metabolism (p = 0.001) and activation (p = 0.001), and tryptophan metabolism (p = 0.008). Megasphaera, clustered with aspartate and asparagine metabolism (p = 0.034), carnitine shuttle (p = 0.002), and tryptophan (p = 0.019), was associated with PNS for cases at T1. Gut bacteria with potential probiotic functions, along with fatty acid metabolism, tryptophan, and carnitine shuttle, were more clustered in cancer cases than the control network and this linkage with PNS needs further studies. CONCLUSIONS Using multi-omics approaches, this study indicated specific microbiome-metabolome pathways linked with PNS in children with cancer across chemotherapy. Due to limitations such as antibiotic use in cancer cases, these findings need to be further confirmed in a larger cohort.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Ronald Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Madelyn Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Melissa Martin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christie Powell
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Hye In Noh
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Yuhua Wu
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Thomas Olson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Deborah W Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Wu L, Ye C, Yao Q, Li Q, Zhang C, Li Y. The role of serum acylcarnitine profiling for the detection of multiple solid tumors in humans. Heliyon 2024; 10:e23867. [PMID: 38205321 PMCID: PMC10776988 DOI: 10.1016/j.heliyon.2023.e23867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Metabolic reprogramming is an essential hallmark of cancer. Several studies have reported the dysregulation of acylcarnitine (ACar) metabolism in tumor cells, suggesting that changes in the blood ACar may be related to tumor growth. Accordingly, this study aimed to understand the alteration of serum ACar profiles in various solid tumors and explore the potential of differential serum ACars as diagnostic biomarkers. A series of 69 relatively abundant ACars were identified via untargeted analysis. Then, targeted metabolomics was used to describe the metabolic alterations in ACars between normal controls and patients with six types of solid tumors. The results suggested that changes in ACars correlated with their carbon chain length and saturation. The six tumor types had highly similar ACar metabolic profiles, indicating similar fatty acid oxidation (FAO) metabolic pathways. Moreover, the receiver operating curve analysis of differential ACars showed that 16 ACars (C8-C14) had high diagnostic capability towards the studied solid tumors. Specifically, the area under the curve of ACar 10:2 isomer2 and ACar 12:2 isomer2 was greater than 0.95. In conclusion, the marked decrease in the levels of medium- and long-chain ACars (C8-C18) in the six solid tumors suggests that they may have similar FAO-based metabolic pathways, which could afford a common target for cancer therapy. Additionally, 16 ACars (C8-C14) were identified as potential biomarkers for diagnosing six types of solid tumors.
Collapse
Affiliation(s)
| | | | | | - Qianqian Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Chunyan Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yuandong Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
8
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Ma J, Chen K, Ding Y, Li X, Tang Q, Jin B, Luo RY, Thyparambil S, Han Z, Chou CJ, Zhou A, Schilling J, Lin Z, Ma Y, Li Q, Zhang M, Sylvester KG, Nagpal S, McElhinney DB, Ling XB, Chen B. High-throughput quantitation of amino acids and acylcarnitine in cerebrospinal fluid: identification of PCNSL biomarkers and potential metabolic messengers. Front Mol Biosci 2023; 10:1257079. [PMID: 38028545 PMCID: PMC10644155 DOI: 10.3389/fmolb.2023.1257079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Due to the poor prognosis and rising occurrence, there is a crucial need to improve the diagnosis of Primary Central Nervous System Lymphoma (PCNSL), which is a rare type of non-Hodgkin's lymphoma. This study utilized targeted metabolomics of cerebrospinal fluid (CSF) to identify biomarker panels for the improved diagnosis or differential diagnosis of primary central nervous system lymphoma (PCNSL). Methods: In this study, a cohort of 68 individuals, including patients with primary central nervous system lymphoma (PCNSL), non-malignant disease controls, and patients with other brain tumors, was recruited. Their cerebrospinal fluid samples were analyzed using the Ultra-high performance liquid chromatography - tandem mass spectrometer (UHPLC-MS/MS) technique for targeted metabolomics analysis. Multivariate statistical analysis and logistic regression modeling were employed to identify biomarkers for both diagnosis (Dx) and differential diagnosis (Diff) purposes. The Dx and Diff models were further validated using a separate cohort of 34 subjects through logistic regression modeling. Results: A targeted analysis of 45 metabolites was conducted using UHPLC-MS/MS on cerebrospinal fluid (CSF) samples from a cohort of 68 individuals, including PCNSL patients, non-malignant disease controls, and patients with other brain tumors. Five metabolic features were identified as biomarkers for PCNSL diagnosis, while nine metabolic features were found to be biomarkers for differential diagnosis. Logistic regression modeling was employed to validate the Dx and Diff models using an independent cohort of 34 subjects. The logistic model demonstrated excellent performance, with an AUC of 0.83 for PCNSL vs. non-malignant disease controls and 0.86 for PCNSL vs. other brain tumor patients. Conclusion: Our study has successfully developed two logistic regression models utilizing metabolic markers in cerebrospinal fluid (CSF) for the diagnosis and differential diagnosis of PCNSL. These models provide valuable insights and hold promise for the future development of a non-invasive and reliable diagnostic tool for PCNSL.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun Ding
- mProbe Inc., Palo Alto, CA, United States
| | - Xiao Li
- mProbe Inc., Palo Alto, CA, United States
| | | | - Bo Jin
- mProbe Inc., Palo Alto, CA, United States
| | - Ruben Y. Luo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Sheeno Thyparambil
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi Han
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, United States
| | - C. James Chou
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | | | - Zhiguang Lin
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Ma
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Li
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengxue Zhang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Karl G. Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Seema Nagpal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Doff B. McElhinney
- Departments of Cardiothoracic Surgery and Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, United States
| | - Xuefeng B. Ling
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Bobin Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Lin T, Chen X, Du L, Wang J, Hu Z, Cheng L, Liu Z, Liu H. Traceability Research on Dendrobium devonianum Based on SWATHtoMRM. Foods 2023; 12:3608. [PMID: 37835262 PMCID: PMC10572708 DOI: 10.3390/foods12193608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
SWATHtoMRM technology was used in this experiment to further identify and trace the sources of Dendrobium devonianum and Dendrobium officinale produced in the same area using TOF and MS-MRM. After the conversion of the R package of SWATHtoMRM, 191 MRM pairs of positive ions and 96 pairs of negative ions were obtained. Dendrobium devonianum and Dendrobium officinale can be separated very well using the PCA and PLS-DA analysis of MRM ion pairs; this shows that there are obvious differences in chemical composition between Dendrobium devonianum and Dendrobium officinale, which clearly proves that the pseudotargeted metabolomics method based on SWATHtoMRM can be used for traceability identification research. A total of 146 characteristic compounds were obtained, with 20 characteristic compounds in Dendrobium devonianum. The enrichment pathways of the characteristic compounds were mainly concentrated in lipids and atherosclerosis, chagas disease, fluid shear stress and atherosclerosis, proteoglycans in cancer, the IL-17 signaling pathway, the sphingolipid signaling pathway, diabetic cardiomyopathy, arginine and proline metabolism, etc., among which the lipid and atherosclerosis pathways were more enriched, and 11 characteristic compounds affected the expression levels of IL-1, TNFα, CD36, IL-1β, etc. These can be used as a reference for research on variety improvement and active substance accumulation in Dendrobium devonianum and Dendrobium officinale.
Collapse
Affiliation(s)
- Tao Lin
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (T.L.); (X.C.); (L.D.); (Z.L.)
| | - Xinglian Chen
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (T.L.); (X.C.); (L.D.); (Z.L.)
| | - Lijuan Du
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (T.L.); (X.C.); (L.D.); (Z.L.)
| | - Jing Wang
- Longling Agricultural Environmental Protection Monitoring Station, Baoshan 678300, China; (J.W.); (Z.H.)
| | - Zhengxu Hu
- Longling Agricultural Environmental Protection Monitoring Station, Baoshan 678300, China; (J.W.); (Z.H.)
| | - Long Cheng
- SCIEX Analytical Instrument Trading Co., Ltd., Shanghai 200335, China;
| | - Zhenhuan Liu
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (T.L.); (X.C.); (L.D.); (Z.L.)
| | - Hongcheng Liu
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (T.L.); (X.C.); (L.D.); (Z.L.)
| |
Collapse
|
11
|
Li D, Lu Y, Zhao F, Yan L, Yang X, Wei L, Yang X, Yuan X, Yang K. Targeted metabolomic profiles of serum amino acids and acylcarnitines related to gastric cancer. PeerJ 2022; 10:e14115. [PMID: 36221263 PMCID: PMC9548315 DOI: 10.7717/peerj.14115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/04/2022] [Indexed: 01/21/2023] Open
Abstract
Background Early diagnosis and treatment are imperative for improving survival in gastric cancer (GC). This work aimed to assess the ability of human serum amino acid and acylcarnitine profiles in distinguishing GC cases from atrophic gastritis (AG) and control superficial gastritis (SG) patients. Methods Sixty-nine GC, seventy-four AG and seventy-two SG control patients treated from May 2018 to May 2019 in Gansu Provincial Hospitalwere included. The levels of 42 serum metabolites in the GC, AG and SG groups were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Then, orthogonal partial least squares discriminant analysis (OPLS-DA) and the Kruskal-Wallis H test were used to identify a metabolomic signature among the three groups. Metabolites with highest significance were examined for further validation. Receiver operating characteristic (ROC) curve analysis was carried out for evaluating diagnostic utility. Results The metabolomic analysis found adipylcarnitine (C6DC), 3-hydroxy-hexadecanoylcarnitine (C16OH), hexanoylcarnitine (C6), free carnitine (C0) and arginine (ARG) were differentially expressed (all VIP >1) and could distinguish GC patients from AG and SG cases. In comparison with the AG and SG groups, GC cases had significantly higher C6DC, C16OH, C6, C0 and ARG amounts. Jointly quantitating these five metabolites had specificity and sensitivity in GC diagnosis of 98.55% and 99.32%, respectively, with an area under the ROC curve (AUC) of 0.9977. Conclusion This study indicates C6DC, C16OH, C6, C0 and ARG could effectively differentiate GC cases from AG and SG patients, and may jointly serve as a valuable circulating multi-marker panel for GC detection.
Collapse
Affiliation(s)
- Dehong Li
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China,Department of Clinical laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Lu
- Department of Clinical laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Fenghui Zhao
- Department of Pathology, Gansu Provincial Hospital, Lanzhou, China
| | - Li Yan
- Department of Clinical laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xingwen Yang
- Department of Clinical laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Lianhua Wei
- Department of Clinical laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoyan Yang
- Department of Clinical laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiumei Yuan
- Department of Clinical laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Kehu Yang
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Melatonin Regulates the Daily Levels of Plasma Amino Acids, Acylcarnitines, Biogenic Amines, Sphingomyelins, and Hexoses in a Xenograft Model of Triple Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23169105. [PMID: 36012374 PMCID: PMC9408859 DOI: 10.3390/ijms23169105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic dysregulation as a reflection of specific metabolite production and its utilization is a common feature of many human neoplasms. Melatonin, an indoleamine that is highly available during darkness, has a variety of metabolic functions in solid tumors. Because plasma metabolites undergo circadian changes, we investigated the role of melatonin on the profile of amino acids (AAs), biogenic amines, carnitines, sphingolipids, and hexoses present in the plasma of mice bearing xenograft triple negative breast cancer (MDA-MB-231 cells) over 24 h. Plasma concentrations of nine AAs were reduced by melatonin, especially during the light phase, with a profile closer to that of non-breast cancer (BC) animals. With respect to acylcarnitine levels, melatonin reduced 12 out of 24 molecules in BC-bearing animals compared to their controls, especially at 06:00 h and 15:00 h. Importantly, melatonin reduced the concentrations of asymmetric dimethylarginine, carnosine, histamine, kynurenine, methionine sulfoxide, putrescine, spermidine, spermine, and symmetric dimethylarginine, which are associated with the BC metabolite sets. Melatonin also led to reduced levels of sphingomyelins and hexoses, which showed distinct daily variations over 24 h. These results highlight the role of melatonin in controlling the levels of plasma metabolites in human BC xenografts, which may impact cancer bioenergetics, in addition to emphasizing the need for a more accurate examination of its metabolomic changes at different time points.
Collapse
|
13
|
U MRA, Shen EYL, Cartlidge C, Alkhatib A, Thursz MR, Waked I, Gomaa AI, Holmes E, Sharma R, Taylor-Robinson SD. Optimized Systematic Review Tool: Application to Candidate Biomarkers for the Diagnosis of Hepatocellular Carcinoma. Cancer Epidemiol Biomarkers Prev 2022; 31:1261-1274. [PMID: 35545293 DOI: 10.1158/1055-9965.epi-21-0687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/17/2021] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
This review aims to develop an appropriate review tool for systematically collating metabolites that are dysregulated in disease and applies the method to identify novel diagnostic biomarkers for hepatocellular carcinoma (HCC). Studies that analyzed metabolites in blood or urine samples where HCC was compared with comparison groups (healthy, precirrhotic liver disease, cirrhosis) were eligible. Tumor tissue was included to help differentiate primary and secondary biomarkers. Searches were conducted on Medline and EMBASE. A bespoke "risk of bias" tool for metabolomic studies was developed adjusting for analytic quality. Discriminant metabolites for each sample type were ranked using a weighted score accounting for the direction and extent of change and the risk of bias of the reporting publication. A total of 84 eligible studies were included in the review (54 blood, 9 urine, and 15 tissue), with six studying multiple sample types. High-ranking metabolites, based on their weighted score, comprised energy metabolites, bile acids, acylcarnitines, and lysophosphocholines. This new review tool addresses an unmet need for incorporating quality of study design and analysis to overcome the gaps in standardization of reporting of metabolomic data. Validation studies, standardized study designs, and publications meeting minimal reporting standards are crucial for advancing the field beyond exploratory studies.
Collapse
Affiliation(s)
- Mei Ran Abellona U
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Eric Yi-Liang Shen
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | | | - Alzhraa Alkhatib
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- National Liver Unit, Menoufiya University, Shbeen El Kom, Egypt
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Imam Waked
- National Liver Unit, Menoufiya University, Shbeen El Kom, Egypt
| | - Asmaa I Gomaa
- National Liver Unit, Menoufiya University, Shbeen El Kom, Egypt
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Health Futures Institute, Murdoch University, Perth WA, Australia
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Simon D Taylor-Robinson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Meikopoulos T, Deda O, Karagiannidis E, Sianos G, Theodoridis G, Gika H. A HILIC-MS/MS method development and validation for the quantitation of 13 acylcarnitines in human serum. Anal Bioanal Chem 2022; 414:3095-3108. [PMID: 35178602 DOI: 10.1007/s00216-022-03940-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022]
Abstract
Acylcarnitines are essential diagnostic markers for complex diseases and fatty acid metabolism disorders, and play an important role in cardiovascular diseases. Herein, a HILIC-MS/MS method was developed and validated for the rapid quantitation of the acylcarnitines C2, C3, C4, C5, C6, C8, C10, C12, C14, C16, C18, C18:1 and C18:2 in human serum. RPLC and HILIC modes were tested, and HILIC was selected since it provided optimum analyte separation. Intra- and interday accuracy ranged from 90.4% to 114% and from 96% to 112%, respectively, while intra- and interday precision ranged from 0.37% to 13.7% and from 1.3% to 9.5%, respectively. A limit of quantitation (LOQ) of 78.1 ng/mL was found for C2, 2.4 ng/mL for C3, C18:1 and C18:2, and 1.2 ng/mL for C4, C5, C6, C8, C10, C12, C14, C16, and C18. Method validation was performed in accordance with bioanalytical method guidelines. Subsequently the method was applied in the analysis of approximately 1040 samples from patients with coronary artery disease.
Collapse
Affiliation(s)
- Thomas Meikopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.,BIOMIC_Auth, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B.1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, Greece
| | - Olga Deda
- BIOMIC_Auth, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B.1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, Greece.,Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Georgios Sianos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.,BIOMIC_Auth, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B.1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, Greece
| | - Helen Gika
- BIOMIC_Auth, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B.1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, Greece. .,Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
15
|
Cífková E, Brumarová R, Ovčačíková M, Dobešová D, Mičová K, Kvasnička A, Vaňková Z, Šiller J, Sákra L, Friedecký D, Holčapek M. Lipidomic and metabolomic analysis reveals changes in biochemical pathways for non-small cell lung cancer tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159082. [PMID: 34793969 DOI: 10.1016/j.bbalip.2021.159082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
Lung cancer represents one of the leading worldwide causes of cancer death, but the pathobiochemistry of this disease is still not fully understood. Here we characterize the lipidomic and metabolomic profiles of the tumor and surrounding normal tissues for 23 patients with non-small cell lung cancer. In total, 500 molecular species were identified and quantified by a combination of the lipidomic shotgun tandem mass spectrometry (MS/MS) analysis and the targeted metabolomic approach using liquid chromatography (LC) - MS/MS. The statistical evaluation includes multivariate and univariate methods with the emphasis on paired statistical approaches. Our research revealed significant changes in several biochemical pathways related to the central carbon metabolism, acylcarnitines, dipeptides as well as the disruption in the lipid metabolism observed mainly for glycerophospholipids, sphingolipids, and cholesteryl esters.
Collapse
Affiliation(s)
- Eva Cífková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Radana Brumarová
- Palacký University Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Magdaléna Ovčačíková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Dana Dobešová
- Palacký University Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Kateřina Mičová
- Palacký University Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Aleš Kvasnička
- Palacký University Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Zuzana Vaňková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Jiří Šiller
- Regional Hospital Pardubice, Surgery Clinic, Kyjevská 44, 53203 Pardubice, Czech Republic
| | - Lukáš Sákra
- Regional Hospital Pardubice, Surgery Clinic, Kyjevská 44, 53203 Pardubice, Czech Republic
| | - David Friedecký
- Palacký University Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 77900 Olomouc, Czech Republic.
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic.
| |
Collapse
|
16
|
Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, Hao H, Xiong J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B 2022; 12:558-580. [PMID: 35256934 PMCID: PMC8897153 DOI: 10.1016/j.apsb.2021.09.019] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive human cancer with increasing incidence worldwide. Multiple efforts have been made to explore pharmaceutical therapies to treat HCC, such as targeted tyrosine kinase inhibitors, immune based therapies and combination of chemotherapy. However, limitations exist in current strategies including chemoresistance for instance. Tumor initiation and progression is driven by reprogramming of metabolism, in particular during HCC development. Recently, metabolic associated fatty liver disease (MAFLD), a reappraisal of new nomenclature for non-alcoholic fatty liver disease (NAFLD), indicates growing appreciation of metabolism in the pathogenesis of liver disease, including HCC, thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment. In this review, we introduce directions by highlighting the metabolic targets in glucose, fatty acid, amino acid and glutamine metabolism, which are suitable for HCC pharmaceutical intervention. We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment. Furthermore, opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed.
Collapse
Key Words
- 1,3-BPG, 1,3-bisphosphoglycerate
- 2-DG, 2-deoxy-d-glucose
- 3-BrPA, 3-bromopyruvic acid
- ACC, acetyl-CoA carboxylase
- ACLY, adenosine triphosphate (ATP) citrate lyase
- ACS, acyl-CoA synthease
- AKT, protein kinase B
- AML, acute myeloblastic leukemia
- AMPK, adenosine mono-phosphate-activated protein kinase
- ASS1, argininosuccinate synthase 1
- ATGL, adipose triacylglycerol lipase
- CANA, canagliflozin
- CPT, carnitine palmitoyl-transferase
- CYP4, cytochrome P450s (CYPs) 4 family
- Cancer therapy
- DNL, de novo lipogenesis
- EMT, epithelial-to-mesenchymal transition
- ER, endoplasmic reticulum
- ERK, extracellular-signal regulated kinase
- FABP1, fatty acid binding protein 1
- FASN, fatty acid synthase
- FBP1, fructose-1,6-bisphosphatase 1
- FFA, free fatty acid
- Fatty acid β-oxidation
- G6PD, glucose-6-phosphate dehydrogenase
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GLS1, renal-type glutaminase
- GLS2, liver-type glutaminase
- GLUT1, glucose transporter 1
- GOT1, glutamate oxaloacetate transaminase 1
- Glutamine metabolism
- Glycolysis
- HCC, hepatocellular carcinoma
- HIF-1α, hypoxia-inducible factor-1 alpha
- HK, hexokinase
- HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase
- HSCs, hepatic stellate cells
- Hepatocellular carcinoma
- IDH2, isocitrate dehydrogenase 2
- LCAD, long-chain acyl-CoA dehydrogenase
- LDH, lactate dehydrogenase
- LPL, lipid lipase
- LXR, liver X receptor
- MAFLD, metabolic associated fatty liver disease
- MAGL, monoacyglycerol lipase
- MCAD, medium-chain acyl-CoA dehydrogenase
- MEs, malic enzymes
- MMP9, matrix metallopeptidase 9
- Metabolic dysregulation
- NADPH, nicotinamide adenine nucleotide phosphate
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- OTC, ornithine transcarbamylase
- PCK1, phosphoenolpyruvate carboxykinase 1
- PFK1, phosphofructokinase 1
- PGAM1, phosphoglycerate mutase 1
- PGK1, phosphoglycerate kinase 1
- PI3K, phosphoinositide 3-kinase
- PKM2, pyruvate kinase M2
- PPARα, peroxisome proliferator-activated receptor alpha
- PPP, pentose phosphate pathway
- Pentose phosphate pathway
- ROS, reactive oxygen species
- SCD1, stearoyl-CoA-desaturase 1
- SGLT2, sodium-glucose cotransporter 2
- SLC1A5/ASCT2, solute carrier family 1 member 5/alanine serine cysteine preferring transporter 2
- SLC7A5/LAT1, solute carrier family 7 member 5/L-type amino acid transporter 1
- SREBP1, sterol regulatory element-binding protein 1
- TAGs, triacylglycerols
- TCA cycle, tricarboxylic acid cycle
- TKIs, tyrosine kinase inhibitors
- TKT, transketolase
- Tricarboxylic acid cycle
- VEGFR, vascular endothelial growth factor receptor
- WD-fed MC4R-KO, Western diet (WD)-fed melanocortin 4 receptor-deficient (MC4R-KO)
- WNT, wingless-type MMTV integration site family
- mIDH, mutant IDH
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Danyu Du
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chan Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengyao Qin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| |
Collapse
|
17
|
Li H, Chen J, Liu J, Lai Y, Huang S, Zheng L, Fan N. CPT2 downregulation triggers stemness and oxaliplatin resistance in colorectal cancer via activating the ROS/Wnt/β-catenin-induced glycolytic metabolism. Exp Cell Res 2021; 409:112892. [PMID: 34688609 DOI: 10.1016/j.yexcr.2021.112892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/18/2021] [Accepted: 10/20/2021] [Indexed: 01/05/2023]
Abstract
Carnitine palmitoyltransferase 2 (CPT2) has been demonstrated to act as a tumor promotor or suppressor in different types of cancers. However, little is known about the effect of CPT2 on colorectal cancer (CRC). In the present study, we analyzed CPT2 expression in CRC tissues and cells. CPT2 was overexpressed in CRC cell lines (SW480 and RKO), and its effects and molecular mechanism on the proliferation, glycolysis, stemness, and oxaliplatin sensitivity were investigated. The xenograft experiment was used to confirm the influence of CPT2 on CRC tumorigenesis in vivo. We found that CPT2 expression was significantly downregulated in CRC patients, and its lower expression was associated with the poor prognosis, large tumor size, advanced TNM stage, and poor histological grade differentiation of patients. Upregulation of CPT2 significantly inhibited the proliferation, glycolytic metabolism, cancer stem cell properties, and oxaliplatin resistance in CRC cells. Also, the increase of CPT2 inhibited tumorigenesis, stemness and glycolysis, while enhanced oxaliplatin sensitivity in mouse models. Mechanistically, CPT2 functioned via suppressing the activation of Wnt/β-catenin pathway through repressing ROS production. In conclusion, our results demonstrated that CPT2 was decreased in CRC, and CPT2 downregulation could trigger stemness and oxaliplatin resistance in CRC via activating the ROS/Wnt/β-catenin-induced glycolytic metabolism. This study indicates that CPT2 is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Hui Li
- Department of Abdominal Radiotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350011, China
| | - JuHui Chen
- Department of Abdominal Radiotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350011, China
| | - Jie Liu
- Department of Abdominal Radiotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350011, China
| | - Yiqin Lai
- Department of Abdominal Radiotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350011, China
| | - Sha Huang
- Department of Abdominal Radiotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350011, China
| | - Liang Zheng
- Department of Abdominal Radiotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350011, China
| | - Nanfeng Fan
- Department of Abdominal Radiotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350011, China.
| |
Collapse
|
18
|
Profiling of Carnitine Shuttle System Intermediates in Gliomas Using Solid-Phase Microextraction (SPME). Molecules 2021; 26:molecules26206112. [PMID: 34684691 PMCID: PMC8540799 DOI: 10.3390/molecules26206112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/17/2023] Open
Abstract
Alterations in the carnitine shuttle system may be an indication of the presence of cancer. As such, in-depth analyses of this pathway in different malignant tumors could be important for the detection and treatment of this disease. The current study aims to assess the profiles of carnitine and acylcarnitines in gliomas with respect to their grade, the presence of isocitrate dehydrogenase (IDH) mutations, and 1p/19q co-deletion. Brain tumors obtained from 19 patients were sampled on-site using solid-phase microextraction (SPME) immediately following excision. Analytes were desorbed and then analyzed via liquid chromatography–high-resolution mass spectrometry. The results showed that SPME enabled the extraction of carnitine and 22 acylcarnitines. An analysis of the correlation factor revealed the presence of two separate clusters: short-chain and long-chain carnitine esters. Slightly higher carnitine and acylcarnitine concentrations were observed in the higher-malignancy tumor samples (high vs. low grade) and in those samples with worse projected clinical outcomes (without vs. with IDH mutation; without vs. with 1p/19q co-deletion). Thus, the proposed chemical biopsy approach offers a simple solution for on-site sampling that enables sample preservation, thus supporting comprehensive multi-method analyses.
Collapse
|
19
|
Tang T, Zhang P, Li S, Xu D, Li W, Tian Y, Jiao Y, Zhang Z, Xu F. Absolute Quantification of Acylcarnitines Using Integrated Tmt-PP Derivatization-Based LC-MS/MS and Quantitative Analysis of Multi-Components by a Single Marker Strategy. Anal Chem 2021; 93:12973-12980. [PMID: 34529423 DOI: 10.1021/acs.analchem.1c02606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acylcarnitines (ACs) play important roles in the fatty acid β-oxidation and are considered as diagnostic markers for many diseases. Accurate determination of ACs remains challenging due to their low abundance, high structure diversity, and limited availability of standard compounds. In this study, microwave-assisted Tmt-PP (p-[3,5-(dimethylamino)-2,4,6-triazine] benzene-1-sulfonyl piperazine) derivatization was utilized to facilitate the liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) determination of ACs. The result indicated that Tmt-PP labeling enables the prediction of the retention time and MS response of ACs and enhances their MS response up to 4 times. The introduction of the microwave during the derivatization procedure greatly improved the reaction efficiency, demonstrated by the shortened reaction time from 90 to 1 min. Furthermore, we applied a strategy named quantitative analysis of multi-components by a single marker (QAMS) for the assay of 26 ACs with only 5 AC standards, solving the standard availability issue to a large extent. The established workflow was applied to discover dysregulated ACs in xenograft colon cancer mice, and the quantification results were highly comparable with traditional methods where there were the corresponding standards for each AC. Our study demonstrated that chemical derivatization-based LC-MS/MS integrated with the QAMS strategy is robust for the identification and quantification of ACs and has great potential in targeted metabolomics study.
Collapse
Affiliation(s)
- Tian Tang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Siqi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Doudou Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yu Jiao
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
20
|
Chen Y, An X, Wang Z, Guan S, An H, Huang Q, Zhang H, Liang L, Huang B, Wang H, Lu M, Nie H, Wang J, Dai X, Lu X. Transcriptome and lipidome profile of human mesenchymal stem cells with reduced senescence and increased trilineage differentiation ability upon drug treatment. Aging (Albany NY) 2021; 13:9991-10014. [PMID: 33795523 PMCID: PMC8064146 DOI: 10.18632/aging.202759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 11/25/2022]
Abstract
Human Mesenchymal stem cells (hMSCs) are multi-potential cells which are widely used in cell therapy. However, the frequently emerged senescence and decrease of differentiation capabilities limited the broad applications of MSC. Several strategies such as small molecules treatment have been widely studied and used to improve the stem characteristics bypassing the senescence but the exact mechanisms for them to reduce senescence have not been fully studied. In this study, hMSCs were treated by rapamycin, oltipraz, metformin, and vitamin C for the indicated time and these cells were subjected to senescence evaluation and trilineage differentiation. Furthermore, transcriptomics and lipidomics datasets of hMSCs after drug treatment were analyzed to interpret biological pathways responsible for their anti-senescence effects. Although four drugs exhibited significant activities in promoting MSC osteogenic differentiation, metformin is the optimal drug to promote trilineage differentiation. GO terms illustrated that the anti-aging effects of drugs were mainly associated with cellular senescence, mitotic and meiosis process. Biosynthesis of phosphatidylcholines (PC) and phosphatidylethanolamine (PE) were inhibited whereas production of phosphatidylinositols (PIs) and saturated fatty acids (SFA)/ mono-unsaturated fatty acids (MUFA) conversion was activated. Medium free fatty acids (FFA) was increased in hMSCs with different anti-aging phenotypes. Therefore, we established a comprehensive method in assessing drug intervention based on the results of transcriptomics and lipidomics. The method can be used to study different biological phenotypes upon drug intervention in MSC which will extend the clinical application of hMSCs.
Collapse
Affiliation(s)
- Yue Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Xinglan An
- National & Local Joint Engineering Laboratory for Animal Models of Human Diseases, First Hospital, Jilin University, Changchun 130021, China
| | - Zengmiao Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Shuanghong Guan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Hongyu An
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Qingyuan Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Haobo Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Lin Liang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Bo Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Huiyu Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161000, Heilongjiang, China
| | - Min Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Jun Wang
- BeiGene (Beijing) Co., Ltd, Beijing 102206, China
| | - Xiangpeng Dai
- National & Local Joint Engineering Laboratory for Animal Models of Human Diseases, First Hospital, Jilin University, Changchun 130021, China
| | - Xin Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| |
Collapse
|
21
|
Feng C, Xue L, Lu D, Jin Y, Qiu X, Gonzalez FJ, Wang G, Zhou Z. Novel Strategy for Mining and Identification of Acylcarnitines Using Data-Independent-Acquisition-Based Retention Time Prediction Modeling and Pseudo-Characteristic Fragmentation Ion Matching. J Proteome Res 2021; 20:1602-1611. [PMID: 33625228 DOI: 10.1021/acs.jproteome.0c00810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is a challenging work to screen, identify, and quantify acylcarnitines in complex biological samples. A method, based on the retention time (RT) prediction and data-independent acquisition strategies, was proposed for the large-scale identification of acylcarnitines using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). Relative cumulative eluotropic strength was introduced as a novel descriptor in building a linear prediction model, which not only solves the problem that acylcarnitines with long carbon chains cannot be well predicted in traditional models but also proves its robustness and transferability across instruments in two data sets that were acquired in distinct chromatography conditions. The accessibility of both predictive RT and MS2 spectra of suspect features effectively reduced about 30% false-positive results, and consequently, 150 and 186 acylcarnitines were identified in the rat liver and human plasma (NIST SRM 1950), respectively. This method provides a new approach in large-scale analysis of acylcarnitine in lipidomic studies and can also be extended to the analysis of other lipids.
Collapse
Affiliation(s)
- Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan West Road, Shanghai 200336, China
| | - Liming Xue
- Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan West Road, Shanghai 200336, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan West Road, Shanghai 200336, China
| | - Yu'e Jin
- Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan West Road, Shanghai 200336, China
| | - Xinlei Qiu
- Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan West Road, Shanghai 200336, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Guoquan Wang
- Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan West Road, Shanghai 200336, China
| | - Zhijun Zhou
- School of Public Health/ MOE Key Lab for Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Matsushita Y, Nakagawa H, Koike K. Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat. Cancers (Basel) 2021; 13:474. [PMID: 33530546 PMCID: PMC7865757 DOI: 10.3390/cancers13030474] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Lipids in our body, which are mainly composed of fatty acids, triacylglycerides, sphingolipids, phospholipids, and cholesterol, play important roles at the cellular level. In addition to being energy sources and structural components of biological membranes, several types of lipids serve as signaling molecules or secondary messengers. Metabolic reprogramming has been recognized as a hallmark of cancer, but changes in lipid metabolism in cancer have received less attention compared to glucose or glutamine metabolism. However, recent innovations in mass spectrometry- and chromatography-based lipidomics technologies have increased our understanding of the role of lipids in cancer. Changes in lipid metabolism, so-called "lipid metabolic reprogramming", can affect cellular functions including the cell cycle, proliferation, growth, and differentiation, leading to carcinogenesis. Moreover, interactions between cancer cells and adjacent immune cells through altered lipid metabolism are known to support tumor growth and progression. Characterization of cancer-specific lipid metabolism can be used to identify novel metabolic targets for cancer treatment, and indeed, several clinical trials are currently underway. Thus, we discuss the latest findings on the roles of lipid metabolism in cancer biology and introduce current advances in lipidomics technologies, focusing on their applications in cancer research.
Collapse
Affiliation(s)
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.M.); (K.K.)
| | | |
Collapse
|
23
|
Zhang S, Lu X, Hu C, Li Y, Yang H, Yan H, Fan J, Xu G, Abnet CC, Qiao Y. Serum Metabolomics for Biomarker Screening of Esophageal Squamous Cell Carcinoma and Esophageal Squamous Dysplasia Using Gas Chromatography-Mass Spectrometry. ACS OMEGA 2020; 5:26402-26412. [PMID: 33110968 PMCID: PMC7581083 DOI: 10.1021/acsomega.0c02600] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/30/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies with poor diagnosis. Esophageal squamous dysplasia (ESD) is considered as an immediate precancerous lesion of ESCC. Lack of biomarkers for discriminating ESCC and ESD from healthy subjects limits the early diagnosis and treatment of ESCC. Therefore, a serum metabolomic strategy was conducted to identify and validate potential metabolic markers for the screening of ESCC and ESD subjects. METHODS A total of 74 patients with ESCC, 72 patients with ESD, and 75 normal control (NC) subjects were enrolled in this study. Gas chromatography-mass spectrometry was used to acquire serum metabolic profiles. Pathway analysis was conducted to uncover the fluctuated metabolic pathways during ESCC. Multivariate analyses were used to screen and validate the biomarkers. RESULTS ESCC, ESD, and NC subjects revealed progressively altered metabolic profiles, in which amino acids globally increased, while fatty acids decreased in ESCCs compared with the control groups. Pathway analysis demonstrated the activated biosynthesis of amino acids and inhibited desaturation of saturated fatty acids. The panel constructed with propanoic acid, linoleic acid, glycerol-3-phosphate, and l-glutamine showed the area under the curve (AUC), sensitivity, and specificity of 0.817, 0.75, and 0.74, respectively, in the discrimination of ESCC/ESD patients from NC subjects. The panel constructed by propanoic acid, l-leucine, and hydroxyproline revealed the AUC, sensitivity, and specificity of 0.819, 0.76, and 0.72, respectively, in the discrimination of ESD from NC subjects. The combination of hypoxanthine, 2-ketoisocaproic acid, l-glutamate, and l-aspartate showed the AUC, sensitivity, and specificity of 0.818, 0.83, and 0.74, respectively, in the discrimination of ESCC patients from ESD subjects. CONCLUSIONS Our study revealed the systematic landscape for metabolic alterations in sera of ESD and ESCC patients. The defined metabolite markers showed reasonable performance in the discrimination of ESCC and ESD patients, and may provide helpful reference for clinicians and biologists.
Collapse
Affiliation(s)
- Su Zhang
- Department
of Cancer Epidemiology, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, Beijing 100021, China
| | - Xin Lu
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Chunxiu Hu
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Yanli Li
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Huan Yang
- Department
of Cancer Epidemiology, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, Beijing 100021, China
| | - Huijiao Yan
- Department
of Cancer Epidemiology, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, Beijing 100021, China
| | - Jinhu Fan
- Department
of Cancer Epidemiology, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, Beijing 100021, China
- . Tel: 010-87787423
| | - Guowang Xu
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- . Tel/Fax: 0086-422-84379530
| | - Christian C. Abnet
- Division
of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Youlin Qiao
- Department
of Cancer Epidemiology, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, Beijing 100021, China
| |
Collapse
|
24
|
Serpa J. Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:1-34. [PMID: 32130691 DOI: 10.1007/978-3-030-34025-4_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment depends and generates dependence on all the cells and structures that share the same niche, the biotope. The contemporaneous view of the tumor microenvironment (TME) agrees with this idea. The cells that make up the tumor, whether malignant or not, behave similarly to classes of elements within a living community. These elements inhabit, modify and benefit from all the facilities the microenvironment has to offer and that will contribute to the survival and growth of the tumor and the progression of the disease.The metabolic adaptation to microenvironment is a crucial process conducting to an established tumor able to grow locally, invade and metastasized. The metastatic cancer cells are reasonable more plastic than non-metastatic cancer cells, because the previous ones must survive in the microenvironment where the primary tumor develops and in addition, they must prosper in the microenvironment in the metastasized organ.The metabolic remodeling requires not only the adjustment of metabolic pathways per se but also the readjustment of signaling pathways that will receive and obey to the extracellular instructions, commanding the metabolic adaptation. Many diverse players are pivotal in cancer metabolic fitness from the initial signaling stimuli, going through the activation or repression of genes, until the phenotype display. The new phenotype will permit the import and consumption of organic compounds, useful for energy and biomass production, and the export of metabolic products that are useless or must be secreted for a further recycling or controlled uptake. In the metabolic network, three subsets of players are pivotal: (1) the organic compounds; (2) the transmembrane transporters, and (3) the enzymes.This chapter will present the "Pharaonic" intent of diagraming the interplay between these three elements in an attempt of simplifying and, at the same time, of showing the complex sight of cancer metabolism, addressing the orchestrating role of microenvironment and highlighting the influence of non-cancerous cells.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
25
|
Zougman A, Wilson JP, Roberts LD, Banks RE. Detergent-Free Simultaneous Sample Preparation Method for Proteomics and Metabolomics. J Proteome Res 2019; 19:2838-2844. [DOI: 10.1021/acs.jproteome.9b00662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alexandre Zougman
- Clinical and Biomedical Proteomics Group, Leeds Institute of Medical Research, St James’s University Hospital, Leeds LS9 7TF, United Kingdom
| | - John P. Wilson
- Protifi LLC, P.O. Box 2317, Huntington, New York 11743, United States
| | - Lee D. Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rosamonde E. Banks
- Clinical and Biomedical Proteomics Group, Leeds Institute of Medical Research, St James’s University Hospital, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
26
|
Kim DJ, Cho EJ, Yu KS, Jang IJ, Yoon JH, Park T, Cho JY. Comprehensive Metabolomic Search for Biomarkers to Differentiate Early Stage Hepatocellular Carcinoma from Cirrhosis. Cancers (Basel) 2019; 11:E1497. [PMID: 31590436 PMCID: PMC6826937 DOI: 10.3390/cancers11101497] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
The established biomarker for hepatocellular carcinoma (HCC), serum α-fetoprotein (AFP), has suboptimal performance in early disease stages. This study aimed to develop a metabolite panel to differentiate early-stage HCC from cirrhosis. Cross-sectional metabolomic analyses of serum samples were performed for 53 and 47 patients with early HCC and cirrhosis, respectively, and 50 matched healthy controls. Results were validated in 82 and 80 patients with early HCC and cirrhosis, respectively. To retain a broad spectrum of metabolites, technically distinct analyses (global metabolomic profiling using gas chromatography time-of-flight mass spectrometry and targeted analyses using liquid chromatography with tandem mass spectrometry) were employed. Multivariate analyses classified distinct metabolites; logistic regression was employed to construct a prediction model for HCC diagnosis. Five metabolites (methionine, proline, ornithine, pimelylcarnitine, and octanoylcarnitine) were selected in a panel. The panel distinguished HCC from cirrhosis and normal controls, with an area under the receiver operating curve (AUC) of 0.82; this was significantly better than that of AFP (AUC: 0.75). During validation, the panel demonstrated significantly better predictability (AUC: 0.94) than did AFP (AUC: 0.78). Defects in ammonia recycling, the urea cycle, and amino acid metabolism, demonstrated on enrichment pathway analysis, may reliably distinguish HCC from cirrhosis. Compared with AFP alone, the metabolite panel substantially improved early-stage HCC detection.
Collapse
Affiliation(s)
- Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul 08826, Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| |
Collapse
|
27
|
Altered serum acylcarnitine profile is associated with the status of nonalcoholic fatty liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma. Sci Rep 2019; 9:10663. [PMID: 31337855 PMCID: PMC6650415 DOI: 10.1038/s41598-019-47216-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic disturbance of lipids is a hallmark of nonalcoholic fatty liver disease (NAFLD). In this study, we measured the serum levels of 15 acylcarnitine species of various carbon chain lengths from 2 to 18 in 241 patients with biopsy-proven NAFLD, including 23 patients with hepatocellular carcinoma (HCC), and analyzed the relationship between serum acylcarnitine profile and NAFLD status. Long-chain acylcarnitines AC14:1 and AC18:1 increased gradually with the progression of fibrosis and further increased in patients with HCC, whereas the middle-chain acylcarnitine AC5:0 exhibited the opposite trend. In particular, AC18:1, which we previously showed to possess a tumor promoting effect, was significantly elevated in patients with HCC compared to those without HCC. In addition, long-chain acylcarntines including AC18:1 were positively correlated with serum levels of inflammatory cytokines. Although none of the acylcarnitine species were independently associated with the presence of HCC, (AC16:0 + AC18:1)/AC2:0, an index for the diagnosis of carnitine palmitoyltransferase 2 (CPT2) deficiency, was independently associated with the presence of HCC after adjusting for age and liver fibrosis stage, likely reflecting the downregulation of CPT2 in HCC tissues. Thus, serum acylcarnitine profiles changed significantly according to the status of NAFLD, which may be implicated in the pathogenesis of NAFLD.
Collapse
|
28
|
Li S, Gao D, Jiang Y. Function, Detection and Alteration of Acylcarnitine Metabolism in Hepatocellular Carcinoma. Metabolites 2019; 9:E36. [PMID: 30795537 PMCID: PMC6410233 DOI: 10.3390/metabo9020036] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Acylcarnitines play an essential role in regulating the balance of intracellular sugar and lipid metabolism. They serve as carriers to transport activated long-chain fatty acids into mitochondria for β-oxidation as a major source of energy for cell activities. The liver is the most important organ for endogenous carnitine synthesis and metabolism. Hepatocellular carcinoma (HCC), a primary malignancy of the live with poor prognosis, may strongly influence the level of acylcarnitines. In this paper, the function, detection and alteration of acylcarnitine metabolism in HCC were briefly reviewed. An overview was provided to introduce the metabolic roles of acylcarnitines involved in fatty acid β-oxidation. Then different analytical platforms and methodologies were also briefly summarised. The relationship between HCC and acylcarnitine metabolism was described. Many of the studies reported that short, medium and long-chain acylcarnitines were altered in HCC patients. These findings presented current evidence in support of acylcarnitines as new candidate biomarkers for studies on the pathogenesis and development of HCC. Finally we discussed the challenges and perspectives of exploiting acylcarnitine metabolism and its related metabolic pathways as a target for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Shangfu Li
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- National & Local United Engineering Lab for Personalized Anti-tumour Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- National & Local United Engineering Lab for Personalized Anti-tumour Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|