1
|
El Saftawy EA, Aboulhoda BE, AbdElkhalek MA, Alghamdi MA, AlHariry NS. Non-coding RNAs in urinary bladder cancer microenvironment: Diagnostic, therapeutic, and prognostic perspective. Pathol Res Pract 2025; 266:155815. [PMID: 39824086 DOI: 10.1016/j.prp.2025.155815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. Despite the reliance of UBC therapy on definite pathological grading and classifications, the clinical response among patients varies widely. The molecular basis of this type of cancer appeals to considerable research; hence, new diagnostic and therapeutic options are introduced. Convenient keywords were searched in Google Scholar, PubMed, the Egyptian Knowledge Bank (EKB), and Web of Science. The recent era of UBC research is concerned with non-coding RNAs (ncRNAs), predominantly, microRNAs (miRNAs) and long non-coding RNA (lncRNAs). In addition, snoRNAs, PIWI-interacting RNAs, mitochondrial RNAs, circular, and Schistosoma haematobium-related ncRNAs appeared to contribute to the pathogenesis of the UBC. This review underscored the recently studied ncRNAs and their importance in the pathogenesis of UBC. Besides, we introduced the prospectives regarding their diagnostic, therapeutic, and prognostic significance in UBC clinical settings. Conclusion. Oncogenic and oncosuppressor ncRNAs' definite balances and interaction within the TME of UBC are key players in the fate of the tumor. Thus, profiling ncRNA in-depth inspects the TME of the UBC for better clinical insights.
Collapse
Affiliation(s)
- Enas A El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Marwa Ali AbdElkhalek
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mansour A Alghamdi
- Central Labs, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia; Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | | |
Collapse
|
2
|
Zhang Z, Li F, Li Y, Li Z, Jia G. In vitro Anti-malignant Property of PCMT1 Silencing and Identification of the SNHG16/miR-195/PCMT1 Regulatory Axis in Breast Cancer Cells. Clin Breast Cancer 2023; 23:302-316. [PMID: 36639265 DOI: 10.1016/j.clbc.2022.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/11/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Protein L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) is a highly conserved protein repair enzyme that participates in regulating the progression of human cancers. We therefore studied the function and the related mechanisms of PCMT1 in breast cancer cells. METHODS Expression profile and prognostic analysis of PCMT1 in breast cancer patients were analyzed using online databases. PCMT1 expression in breast cancer cells was detected by western blot analysis. Cell proliferation was determined by CCK-8 and colony formation assays. Apoptosis was evaluated using flow cytometry analysis and caspase-3/7 activity assay. Cell invasion was assessed by Transwell invasion assay. The small nucleolar RNA host gene 16 (SNHG16)/miR-195/PCMT1 regulatory axis was identified using bioinformatics analysis. RESULTS PCMT1 expression was increased in breast cancer tissues and cells. High PCMT1 expression was correlated with poor prognosis in breast cancer patients. PCMT1 knockdown suppressed cell proliferation and colony formation ability in breast cancer cells. Moreover, PCMT1 knockdown induced apoptosis and restrained the invasive ability in breast cancer cells. PCMT1 overexpression increased the proliferative and invasive abilities of breast cancer cells. miR-195 was identified as the unique upstream miRNA of PCMT1. SNHG16 was identified as the unique upstream lncRNA of miR-195. SNHG16 knockdown downregulated PCMT1 by increasing miR-195 expression. Breast cancer cell proliferation was regulated by the SNHG16/miR-195/PCMT1 axis. CONCLUSION PCMT1 silencing inhibited cell proliferation and invasion and induced apoptosis in breast cancer cells and the SNHG16/miR-195/PCMT1 regulatory axis might serve as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Zhongji Zhang
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China; Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
| | - Fengbo Li
- Department of Respiratory Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Yan Li
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China.
| |
Collapse
|
3
|
Han R, Zhang P, Li H, Chen Y, Hao Y, Guo Q, Zhang A, Li D. Differential Expression and Correlation Analysis of Global Transcriptome for Hemorrhagic Transformation After Acute Ischemic Stroke. Front Neurosci 2022; 16:889689. [PMID: 35757529 PMCID: PMC9214200 DOI: 10.3389/fnins.2022.889689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In order to explore the epigenetic characteristics of hemorrhagic transformation (HT) after acute ischemic stroke, we used transcriptome sequencing technology to analyze the global transcriptome expression profile of patients with and without HT after acute ischemic stroke and to study the differential expression of messenger RNA (mRNA), long noncoding RNA (lncRNA), circular RNA (circRNA) and mircoRNA (miRNA) between the two groups. To further explore the role of differentially expressed genes in HT, we annotated the function of differentially expressed genes by using gene ontology (GO) and pathway analysis on the results and showed that there were 1,051 differential expressions of lncRNAs, 2,575 differential expressions of mRNAs, 447 differential expressions of circRNAs and 47 miRNAs in patients with HT compared with non-HT patients. Pathway analysis showed that ubiquitin-mediated proteolysis, MAPK signal pathway, axon guidance, HIF-1 signal pathway, NOD-like receptor signal pathway, beta-alanine metabolism, Wnt signal pathway, sphingolipid signal pathway, neuroactive ligand-receptor interaction, and intestinal immune network used in IgA production play an important role in HT. Terms such as iron homeostasis, defense response, immune system process, DNA conformational change, production of transforming growth factor beta-2, and oxidoreductase activity were enriched in the gene list, suggesting a potential correlation with HT. A total of 261 lncRNA-miRNA relationship pairs and 21 circRNA-miRNA relationship pairs were obtained; additionally, 5 circRNAs and 13 lncRNAs were screened, which can be used as competing endogenous RNA (ceRNA) to compete with miRNA in the co-expression network. Co-expression network analysis shows that these differentially expressed circRNA and lncRNA may play a vital role in HT and provide valuable information for new biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Rongrong Han
- Department of Clinical Medicine, Jining Medical University, Jining, China
| | - Peng Zhang
- Department of Clinical Medicine, Jining Medical University, Jining, China
| | - Hongfang Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yun Chen
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yongnan Hao
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qiang Guo
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Aimei Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Daojing Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
4
|
Liang W, Ke J. Remifentanil reduces the proliferation, migration and invasion of HCC cells via lncRNA NBR2/miR‐650/TIMP3 axis. Int J Exp Pathol 2022; 103:44-53. [PMID: 35156240 PMCID: PMC8961499 DOI: 10.1111/iep.12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer cell hyperproliferation and metastasis are major causes of cancer-associated mortality. Although the use of anaesthetics and analgesics may affect cancer cell metastasis, the underlying molecular mechanism remains unclear. This study aimed to explore the mechanisms of action of remifentanil on hepatocellular carcinoma (HCC) progression. Cell viability was measured by the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-h-tetrazolium bromide assay. Quantitative real-time polymerase chain reaction and Western blotting were performed to assess the expression levels of long non-coding RNA (lncRNA) neighbour of BRCA1 gene 2 (NBR2), microRNA (miR)-650 and tissue inhibitor of metalloproteinase-3 (TIMP3) in HCC cells. Wound healing and transwell assays were employed to evaluate the migration and invasion of HCC cells respectively. The target relationships between miR-650 and NBR2/TIMP3 were confirmed by dual luciferase reporter assay. Remifentanil reduced the viability of HCC cells in a dose-dependent manner. Remifentanil treatment significantly increased the expression of lncRNA NBR2 and TIMP3, and repressed miR-650 expression in HCC cells. Decreased lncRNA NBR2 or increased miR-650 promoted the proliferation, migration and invasion of remifentanil-treated HCC cells. LncRNA NBR2 targeted miR-650, and miR-650 further targeted TIMP3. Moreover, miR-650 down-regulation or TIMP3 up-regulation reversed the effects of lncRNA NBR2 knockdown that caused an enhancement of cell viability, migration and invasiveness in remifentanil-treated HCC cells. Thus remifentanil reduces the proliferation, migration and invasion of HCC cells via the lncRNA NBR2/miR-650/TIMP3 axis in vitro.
Collapse
Affiliation(s)
- Wei Liang
- Department of Anesthesia Wuhan Fourth Hospital Puai Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jinyuan Ke
- Department of Anesthesia Wuhan Fourth Hospital Puai Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
5
|
Yang X, Wei X, Yi C, Yang Y, Fang Z, Dai Y, Guo Y, Song D. Long Noncoding RNA HAND2-AS1 Suppresses Cell Proliferation, Migration, and Invasion of Bladder Cancer via miR-17-5p/ KLF9 Axis. DNA Cell Biol 2022; 41:179-189. [PMID: 35007433 DOI: 10.1089/dna.2021.0637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is the most common type of malignant tumor in the genitourinary system. Through the microarray analysis of clinical samples, long noncoding RNA HAND2-AS1 expression was found to be downregulated in BC tissues. However, the function of HAND2-AS1 on BC and underlying mechanism are unclear. In this study, the correlations of HAND2-AS1 with clinicopathological parameters in BC patients were determined. The gain- and loss-of-function experiments were conducted to examine the role of HAND2-AS1 in malignant behaviors of BC cells in vitro and in vivo. Then, we paid attention to miR-17-5p/KLF9 axis to illustrate the molecular mechanism. Results showed that HAND2-AS1 was downregulated in BC tissues, and its overexpression significantly inhibited cell proliferation, migration, and invasion in vitro, as well as tumor growth in vivo. Knockdown of HAND2-AS1 caused an opposite effect on BC cell malignancies. Furthermore, miR-17-5p was shown to be a direct target of HAND2-AS1, and it reversed the inhibitory effect of HAND2-AS1 on BC malignancies. Also, as a downstream factor of miR-17-5p, KLF9 silencing was demonstrated to mediate the role of miR-17-5p inhibitor in BC cell proliferation and invasion. Thus, it suggests that HAND2-AS1 acts as a suppressor in BC development through miR-17-5p/KLF9 axis.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Xiaosong Wei
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Chengzhi Yi
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yang Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Zhiwei Fang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yuanheng Dai
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yufeng Guo
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Dongkui Song
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
6
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Shojaei S. A Review on the Role of Small Nucleolar RNA Host Gene 6 Long Non-coding RNAs in the Carcinogenic Processes. Front Cell Dev Biol 2021; 9:741684. [PMID: 34671603 PMCID: PMC8522957 DOI: 10.3389/fcell.2021.741684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/09/2021] [Indexed: 01/27/2023] Open
Abstract
Being located on 17q25.1, small nucleolar RNA host gene 6 (SNHG16) is a member of SNHG family of long non-coding RNAs (lncRNA) with 4 exons and 13 splice variants. This lncRNA serves as a sponge for a variety of miRNAs, namely miR-520a-3p, miR-4500, miR-146a miR-16–5p, miR-98, let-7a-5p, hsa-miR-93, miR-17-5p, miR-186, miR-302a-3p, miR-605-3p, miR-140-5p, miR-195, let-7b-5p, miR-16, miR-340, miR-1301, miR-205, miR-488, miR-1285-3p, miR-146a-5p, and miR-124-3p. This lncRNA can affect activity of TGF-β1/SMAD5, mTOR, NF-κB, Wnt, RAS/RAF/MEK/ERK and PI3K/AKT pathways. Almost all studies have reported oncogenic effect of SNHG16 in diverse cell types. Here, we explain the results of studies about the oncogenic role of SNHG16 according to three distinct sets of evidence, i.e., in vitro, animal, and clinical evidence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedpouzhia Shojaei
- Department of Critical Care Medicine, Imam Hossein Medical and Educational Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
He X, Xiao H, Yang R, Chen H, Wang B. lncRNA LOC339524 inhibits the proliferation of bladder cancer cells by targeting the miR-875-5p/COPS7A signaling axis. Exp Ther Med 2021; 22:1202. [PMID: 34584547 PMCID: PMC8422399 DOI: 10.3892/etm.2021.10636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/21/2021] [Indexed: 12/28/2022] Open
Abstract
It has been reported that long non-coding RNAs (lncRNAs) play a crucial role in the progression of various types of cancer. The role of numerous lncRNAs in a variety of cancer types has been investigated. However, the underlying mechanisms of the majority of lncRNAs in bladder cancer (BCa) remain to be elucidated. In the present study, abnormally expressed lncRNAs in BCa and para-carcinoma tissues were identified through screening the Cancer RNA-Seq Nexus database and were validated using reverse transcription-quantitative PCR. It was found that LOC339524 expression levels were markedly downregulated in BCa tissues and cells (J82, T24, UM-UC-3 and 5637). LOC339524 overexpression was revealed to suppress the proliferation of BCa cells. LOC339524 was also discovered to act as a sponge for microRNA (miR)-875-5p, as identified using dual luciferase reporter assays and biotin pull-down analysis. LOC339524 downregulated the expression of miR-875-5p and knockdown of miR-875-5p expression inhibited the proliferation of bladder cancer cells. In addition, COP9 signalosome subunit 7A (COPS7A) was identified to be the target gene of miR-875-5p and COPS7A expression level was upregulated following LOC339524 overexpression. lncRNA LOC339524 was proposed to function as a competitive endogenous RNA to facilitate the expression of COPS7A by binding to miR-875-5p. In conclusion, the findings of the present study suggested that LOC339524 may inhibit cell proliferation in BCa by targeting the miR-875-5p/COPS7A signaling axis.
Collapse
Affiliation(s)
- Xuan He
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - He Xiao
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Rui Yang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hang Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bin Wang
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
8
|
Yang R, Xu B, Yang B, Fu J, Chen H, Wang X. Non-coding RNAs: the extensive and interactive regulators of the blood-brain barrier permeability. RNA Biol 2021; 18:108-116. [PMID: 34241576 PMCID: PMC8677028 DOI: 10.1080/15476286.2021.1950465] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB), which controls permeability into and out of the nervous system, is a tightly connected, structural, and functional separation between the central nervous system (CNS) and circulating blood. CNS diseases, such as Alzheimer’s disease, multiple sclerosis, traumatic brain injury, stroke, meningitis, and brain cancers, often develop with the increased BBB permeability and further leads to irreversible CNS injury. Non-coding RNAs (ncRNAs) are functional RNA molecules that generally lack the coding abilities but can actively regulate the mRNA expression and function through different mechanisms. Various types of ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are highly expressed in brain microvascular endothelial cells and are potential mediators of BBB permeability. Here, we summarized the recent research progress on miRNA, lncRNA, and circRNA roles regulating the BBB permeability in different CNS diseases. Understanding how these ncRNAs affect the BBB permeability shall provide important therapeutic insights into the prevention and control of the BBB dysfunction.
Collapse
Affiliation(s)
- Ruicheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Bojie Xu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Bo Yang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Jiyang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Huanchun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Xiangru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| |
Collapse
|
9
|
Zhang C, Hu J, Li H, Ma H, Othmane B, Ren W, Yi Z, Qiu D, Ou Z, Chen J, Zu X. Emerging Biomarkers for Predicting Bladder Cancer Lymph Node Metastasis. Front Oncol 2021; 11:648968. [PMID: 33869048 PMCID: PMC8044933 DOI: 10.3389/fonc.2021.648968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer is one of the leading causes of cancer deaths worldwide. Early detection of lymph node metastasis of bladder cancer is essential to improve patients' prognosis and overall survival. Current diagnostic methods are limited, so there is an urgent need for new specific biomarkers. Non-coding RNA and m6A have recently been reported to be abnormally expressed in bladder cancer related to lymph node metastasis. In this review, we tried to summarize the latest knowledge about biomarkers, which predict lymph node metastasis in bladder cancer and their mechanisms. In particular, we paid attention to the impact of non-coding RNA on lymphatic metastasis of bladder cancer and its specific molecular mechanisms, as well as some prediction models based on imaging, pathology, and biomolecules, in an effort to find more accurate diagnostic methods for future clinical application.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongzhi Ma
- Department of Radiation Oncology, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenbiao Ren
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,George Whipple Lab for Cancer Research, University of Rochester Medical Institute, Rochester, NY, United States
| | - Zhenglin Yi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongxu Qiu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Mao J, Gao W, Xue L, Wang J, Zhao L. The lncRNA SLCO4A1-AS1/miR-876-3p/RBBP6 axis regulates cell proliferation and apoptosis in acute lymphocytic leukemia via the JNK signaling pathway. Int J Lab Hematol 2021; 43:1050-1061. [PMID: 33683013 DOI: 10.1111/ijlh.13501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Acute lymphocytic leukemia (ALL) is a hematologic malignancy caused by the clonal proliferation of immature lymphocytes. Long noncoding RNAs (lncRNAs) have been reported as critical regulators in several cancers, including ALL. LncRNA SLCO4A1 antisense RNA 1 (SLCO4A1-AS1) has been revealed to be implicated in tumorigenesis of several cancers. Our study focused on the role of SLCO4A1-AS1 in ALL. METHODS RT-qPCR, Western blot analysis, CCK-8, EdU, and Flow cytometry analysis were used to explore the biological function of SLCO4A1-AS1 in ALL cellular processes. Luciferase reporter and RNA pull-down assays were applied to explore the mechanism of SLCO4A1-AS1 in ALL cells. RESULTS SLCO4A1-AS1 was upregulated in ALL tissues and cell lines. We found that suppression of SLCO4A1-AS1 suppressed ALL cell proliferation and facilitated cell apoptosis. Our result confirmed that SLCO4A1-AS1 acted as a ceRNA by sponging microRNA 876-3p (miR-876-3p) to upregulate retinoblastoma binding protein 6 (RBBP6) expression in ALL cells. Moreover, SLCO4A1-AS1 activated the JNK signaling pathway by upregulating RBBP6. Rescue assays revealed that the activation of the JNK signaling or overexpression of RBBP6 revered the suppressive effect of SLCO4A1-AS1 knockdown on growth of ALL cells. CONCLUSION SLCO4A1-AS1 promoted cell growth of ALL by the miR-876-3p/RBBP6 axis to activate the JNK signaling pathway.
Collapse
Affiliation(s)
- Jianping Mao
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Wenliang Gao
- Department of Internal Medicine, The Second Children & Women's Healthcare of Jinan City, Jinan, China
| | - Lianguo Xue
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Juan Wang
- Department of Pediatrics, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Lidong Zhao
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| |
Collapse
|
11
|
Wang Q, Han J, Xu P, Jian X, Huang X, Liu D. Silencing of LncRNA SNHG16 Downregulates Cyclin D1 (CCND1) to Abrogate Malignant Phenotypes in Oral Squamous Cell Carcinoma (OSCC) Through Upregulating miR-17-5p. Cancer Manag Res 2021; 13:1831-1841. [PMID: 33654431 PMCID: PMC7910113 DOI: 10.2147/cmar.s298236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background Targeting the long non-coding RNAs (LncRNAs)-microRNAs (miRNAs)-mRNA competing endogenous RNA (ceRNA) networks has been proved as an effective strategy to treat multiple cancers, including oral squamous cell carcinoma (OSCC). Based on this, the present study identified a novel LncRNA SNHG16/miR-17-5p/CCND1 signaling pathway that played an important role in regulating the pathogenesis of OSCC. Methods The expression levels of cancer-associated genes were examined by Real-Time qPCR and Western Blot at transcriptional and translated levels, respectively. CCK-8 assay was performed to determine cell proliferation, and cell apoptosis ratio was measured by the Annexin V-FITC/PI double staining assay. Transwell assay was performed to examine cell migration, and dual-luciferase reporter gene system assay was used to validate the ceRNA networks. Results LncRNA SNHG16 and CCND1 were upregulated, while miR-17-5p was downregulated in OSCC tissues and cell lines, compared to their normal counterparts. Also, miR-17-5p negatively correlated with both LncRNA SNHG16 and CCND1 mRNA, but LncRNA SNHG16 was positively relevant to CCND1 mRNA in OSCC tissues. By performing the gain- and loss-of-function experiments, we noticed that LncRNA SNHG16 overexpression aggravated the malignant phenotypes, such as cell proliferation, viability, migration and epithelial-mesenchymal transition (EMT) in OSCC cells, while LncRNA SNHG16 knock-down had opposite effects. Furthermore, our dual-luciferase reporter gene system evidenced that LncRNA SNHG16 sponged miR-17-5p to upregulate CCND1 in OSCC cells, and the inhibiting effects of LncRNA SNHG16 ablation on OSCC progression were abrogated by both downregulating miR-17-5p and overexpressing CCND1. Finally, the xenograft tumor-bearing mice models were established, and our data validated that LncRNA SNHG16 served as an oncogene to promote tumorigenicity of OSCC cells in vivo. Conclusion Taken together, targeting the LncRNA SNHG16/miR-17-5p/CCND1 axis hindered the development of OSCC, and this study provided potential diagnostic and therapeutic biomarkers for OSCC in clinic.
Collapse
Affiliation(s)
- Qiuling Wang
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| | - Jingxin Han
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| | - Pu Xu
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| | - Xinchun Jian
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xieshan Huang
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| | - Deyu Liu
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| |
Collapse
|
12
|
Meireles Da Costa N, Palumbo A, De Martino M, Fusco A, Ribeiro Pinto LF, Nasciutti LE. Interplay between HMGA and TP53 in cell cycle control along tumor progression. Cell Mol Life Sci 2021; 78:817-831. [PMID: 32920697 PMCID: PMC11071717 DOI: 10.1007/s00018-020-03634-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023]
Abstract
The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Wang J, Peng X, Li R, Liu K, Zhang C, Chen X, Huang G, Zhao L, Chen Z, Lai Y. Evaluation of Serum miR-17-92 Cluster as Noninvasive Biomarkers for Bladder Cancer Diagnosis. Front Oncol 2021; 11:795837. [PMID: 35004321 PMCID: PMC8727362 DOI: 10.3389/fonc.2021.795837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Previous studies have shown that the miR-17-92 cluster is involved in the occurrence and development of bladder cancer. However, the role of serum miR-17-92 cluster in the diagnosis of bladder cancer has not been studied. In the present study, we evaluated the expression of miR-17-92 cluster members in bladder cancer tissues by analyzing 428 cases from TCGA database. Next, we collected the sera of 74 bladder cancer patients and 90 controls, and used qRT-PCR to detect the relative expression of the cluster. The results showed that the expression of the cluster members in the sera of patients were significantly higher than that of the controls, and they were positively correlated with the clinical stage and pathological grade of the patients. We evaluated their ability to diagnose bladder cancer using ROC, of which miR-92a-3p (AUC = 0.902), miR-17-5p (AUC = 0.845) and miR-20a-5p (AUC = 0.806) were the most prominent. Finally, we established a diagnostic model by logistic regression (AUC = 0.969). We further validated the results of the study using another dataset from the GEO database. Moreover, we evaluated the prognostic value of the cluster. The results revealed that miR-20a-5p was correlated with recurrence of bladder cancer. In summary, the present study validated the overexpression of serum miR-17-92 cluster in bladder cancer. The model composed of the three cluster members were confirmed to be a promising noninvasive biomarker for bladder cancer diagnosis.
Collapse
Affiliation(s)
- Jingyao Wang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiqi Peng
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
- Anhui Medical University, Hefei, China
| | - Kaihao Liu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
- Anhui Medical University, Hefei, China
| | - Chunduo Zhang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Liwen Zhao
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
- Anhui Medical University, Hefei, China
| | - Zebo Chen
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Yongqing Lai, ; Zebo Chen,
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
- Anhui Medical University, Hefei, China
- *Correspondence: Yongqing Lai, ; Zebo Chen,
| |
Collapse
|
14
|
Liu B, Gao W, Sun W, Li L, Wang C, Yang X, Liu J, Guo Y. Promoting roles of long non-coding RNA FAM83H-AS1 in bladder cancer growth, metastasis, and angiogenesis through the c-Myc-mediated ULK3 upregulation. Cell Cycle 2020; 19:3546-3562. [PMID: 33289601 DOI: 10.1080/15384101.2020.1850971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) FAM83H-AS1 has been recently identified with oncogenic roles in many human cancers. But its role in bladder cancer (BCa) pathogenesis and the mechanisms are largely unstudied. This study aims to evaluate the roles of FAM83H-AS1 in the malignant behaviors and the angiogenesis of BCa cells and the mechanical molecules involved. High expression of FAM83H-AS1 was found in 82 BCa tissues and in BCa cell lines compared to the normal ones. FAM83H-AS1 downregulation in T24 and BK10 cells inhibited viability, colony formation, migration, invasion, and angiogenesis of BCa cells and increased cell apoptosis. FAM83H-AS1 was found to bind to the transcription factor c-Myc to activate ULK3 expression. Overexpression of ULK3 was further introduced into T24 and BK10 cells in the presence of FAM83H-AS1 silencing, which blocked the inhibitory effects of FAM83H-AS1 downregulation on BCa cell growth. The activity of the Hedgehog signaling pathway was suppressed by FAM83H-AS1 while recovered by ULK3. Suppression of the Hedgehog pathway reduced the malignant behaviors of BCa cells promoted by ULK3. The in vitro experiment results were reproduced in vivo. This study evidenced that FAM83H-AS1 upregulates ULK3 expression through the transcription factor c-Myc and promotes the progression of BCa.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College , Bengbu, Anhui, P.R. China
| | - Wuyue Gao
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College , Bengbu, Anhui, P.R. China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College , Bengbu, Anhui, P.R. China
| | - Liqiang Li
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College , Bengbu, Anhui, P.R. China
| | - Chao Wang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College , Bengbu, Anhui, P.R. China
| | - Xiaohuai Yang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College , Bengbu, Anhui, P.R. China
| | - Jianmin Liu
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College , Bengbu, Anhui, P.R. China
| | - Yuanyuan Guo
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College , Bengbu, Anhui, P.R. China
| |
Collapse
|
15
|
Li D, Zhong S, Zhu Z, Jiang X, Zhang J, Gu J, Chen F. LncRNA MAFG-AS1 Promotes the Progression of Bladder Cancer by Targeting the miR-143-3p/COX-2 Axis. Pathobiology 2020; 87:345-355. [DOI: 10.1159/000509957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/05/2020] [Indexed: 11/19/2022] Open
Abstract
<b><i>Background:</i></b> Long noncoding RNAs (lncRNAs) are potential biomarkers that are very important for the development of cancer. Studies show that lncRNAs are significantly correlated with the carcinogenesis and progression of bladder cancer (BLCA). In this research, we aimed at probing into the role of lncRNA MAFG-AS1 in the tumorigenesis of BLCA. <b><i>Methods:</i></b> RT-qPCR was employed to detect MAFG-AS1 expression in BLCA tissues and cells. MAFG-AS1 siRNA and overexpression plasmid were transfected into 5637 and T24 BLCA cell lines to inhibit or upregulate MAFG-AS1 expression, respectively, and then the regulatory functions of MAFG-AS1 on BLCA cell proliferation, migration, and invasion were assessed using cell counting kit-8 (CCK-8) assay, EdU method, and Transwell experiments, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation were conducted to validate the targeting relationships between MAFG-AS1 and miR-143-3p, and miR-143-3p and COX-2. In addition, miR-143-3p was repressed in MAFG-AS1-silenced 5637 and T24 cell lines, and the function of MAFG-AS1/miR-143-3p axis in BLCA cells was further evaluated. The regulatory effects of MAFG-AS1 and miR-143-3p on the expression of COX-2 protein were detected by Western blot. <b><i>Results:</i></b> MAFG-AS1 was remarkably upregulated in BLCA patient tissues and cell lines, and its high expression was closely related to histological grade, tumor size, and lymph node metastasis. Silencing of MAFG-AS1 inhibited BLCA cell proliferation, metastasis, and invasion, while overexpression of MAFG-AS1 in BLCA cells had opposite biological effects. MAFG-AS1 was proved to target miR-143-3p to repress its expression. Moreover, it was confirmed that MAFG-AS1 and miR-143-3p could modulate COX-2 expression. <b><i>Conclusion:</i></b> The MAFG-AS1/miR-143-3p/COX-2 axis contributes to BLCA progression.
Collapse
|
16
|
Wang X, Zhang R, Wu S, Shen L, Ke M, Ouyang Y, Lin M, Lyu Y, Sun B, Zheng Z, Yang J, Yang J, Lu W, Yang Y, Li D, Zou Y, Huang H, Nan A. Super-Enhancer LncRNA LINC00162 Promotes Progression of Bladder Cancer. iScience 2020; 23:101857. [PMID: 33344916 PMCID: PMC7736918 DOI: 10.1016/j.isci.2020.101857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Due to the lack of effective early diagnostic measures and treatment methods, bladder cancer has become a malignant tumor that seriously threatens people's lives and health. Here, we reported that LINC00162, a super-enhancer long noncoding RNA, was highly expressed in bladder cancer cells and tissues. And LINC00162 was negatively correlated with neighboring PTTG1IP expression. Knocking down LINC00162 expression can inhibit the proliferative activity of bladder cancer cells and the growth of transplanted tumors in vivo, while knocking down the expression of PTTG1IP could restore the proliferative activity of bladder cancer cells. In addition, both LINC00162 and PTTG1IP were found to be able to bind to THRAP3, a transcription-related protein. And THRAP3 can regulate PTTG1IP expression. Finally, we demonstrated a mechanism that LINC00162 could regulate PTTG1IP expression through binding THRAP3. This study provided a potential target molecule for clinical treatment of bladder cancer. Expression of LINC00162 is increased in bladder cancer LINC00162 promotes bladder cancer progress in vitro and in vivo LINC00162 regulates neighboring PTTG1IP expression to promote bladder cancer LINC00162 inhibits PTTG1IP expression by interacting THRAP3
Collapse
Affiliation(s)
- Xin Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruirui Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.,Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Shuilian Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Liping Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Meixia Ke
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yan Ouyang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mengqi Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yiting Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Binuo Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhijian Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jialei Yang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Jie Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Wenmin Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Yiping Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Danni Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Aruo Nan
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.,Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
17
|
Ding Y, Sun Z, Zhang S, Han X, Li Y, Xu Q, Zhou L, Xu H, Bai Y, Xu C, Ding H, Ge Y, Wang W. Down-regulation of small nuclear RNA (snRNA) RNU5E-1 in hepatocellular carcinoma presents with vital clinical significance. J Gastrointest Oncol 2020; 11:738-746. [PMID: 32953157 DOI: 10.21037/jgo-20-49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background For lack of accurate diagnosis and ideal prognosis assessment, hepatocellular carcinoma (HCC) has become the fourth cancers-related death malignant diseases. Small nuclear RNAs (snRNAs) have been investigated as a new class of regulators associated with pathogenesis and clinical evaluation of tumors such as HCC. As for RNU5E-1, one newly identified snRNA, may have similar functions. However, the relationship between RNU5E-1 expression and HCC tumorigenesis remains unclear. Methods The relative RNU5E-1 expression was measured in several HCC cell lines and HCC tissues of 100 patients using quantitative real-time PCR. All patients were grouped according to individual RNU5E-1 expression. Then, the potential association between RNU5E-1 expression in HCC clinical characteristics and prognostic information of patients was evaluated. Results Compared to human normal hepatocyte cell line QSG-7701, the RNU5E-1 expression in HCC cell lines (fold change: SK-HEP-1, 0.417; Hep 3B, 0.313; Huh-7, 0.189) were significantly down-regulated (P<0.05). Similarly, its expression levels were remarkably lower in HCC tissue than that in corresponding adjacent liver tissues (average fold change: 0.322, P=0.002). Besides, the expression level of RNU5E-1 was remarkably related to tumor size, vessel carcinoma embolus, differentiation level, TNM stages and tumor recurrence rate as well as long-term survival in HCC patients (P<0.05). Moreover, in Kaplan-Meier and Cox regression analysis, RNU5E-1 expression was remarkably correlated to postoperative tumor-free as well as long-term survival in HCC patients as independent factors (P<0.05). Conclusions The research revealed that RNU5E-1 was down-regulated in HCC and it could be one of indicators for diagnosis and prognostic prediction of HCC patients.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Sitong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Xin Han
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yanjie Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Qianhui Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Liuzhi Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yang Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Chang Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Hao Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yao Ge
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
18
|
Xiao Y, Xiao T, Ou W, Wu Z, Wu J, Tang J, Tian B, Zhou Y, Su M, Wang W. LncRNA SNHG16 as a potential biomarker and therapeutic target in human cancers. Biomark Res 2020; 8:41. [PMID: 32944244 PMCID: PMC7487997 DOI: 10.1186/s40364-020-00221-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/26/2020] [Indexed: 01/27/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) represent an important class of RNAs comprising more than 200 nucleotides, which are produced by RNA polymerase II. Although lacking an open reading framework and protein-encoding activity, lncRNAs can mediate endogenous gene expression by serving as chromatin remodeler, transcriptional or post-transcriptional modulator, and splicing regulator during gene modification. In recent years, increasing evidence shows the significance of lncRNAs in many malignancies, with vital roles in tumorigenesis and cancer progression. Moreover, lncRNAs were also considered potential diagnostic and prognostic markers in cancer. The lncRNA small nuclear RNA host gene 16 (SNHG16), found on chromosome 17q25.1, represents a novel tumor-associated lncRNA. SNHG16 was recently found to exhibit dysregulated expression in a variety of malignancies. There are growing evidence of SNHG16's involvement in characteristics of cancer, including proliferation, apoptosis, together with its involvement in chemoresistance. In addition, SNHG16 has been described as a promising diagnostic and prognostic biomarker in cancer patients. The current review briefly summarizes recently reported findings about SNHG16 and discuss its expression, roles, mechanisms, and diagnostic and prognostic values in human cancers.
Collapse
Affiliation(s)
- Yuhang Xiao
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 PR China
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410001 PR China
| | - Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu 210042 China
| | - Wei Ou
- Department of Pharmacy, The First People’s Hospital of Yue Yang, Yue Yang, PR China
| | - Zhining Wu
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 PR China
| | - Jie Wu
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 PR China
| | - Jinming Tang
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 PR China
| | - Bo Tian
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 PR China
| | - Yong Zhou
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 PR China
| | - Min Su
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 PR China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenxiang Wang
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 PR China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
19
|
Fan H, Zhang W. Overexpression of Linc 4930556M19Rik Suppresses High Glucose-Triggered Podocyte Apoptosis, Fibrosis and Inflammation via the miR-27a-3p/Metalloproteinase 3 (TIMP3) Axis in Diabetic Nephropathy. Med Sci Monit 2020; 26:e925361. [PMID: 32896839 PMCID: PMC7500124 DOI: 10.12659/msm.925361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) play vital roles in development of diabetic nephropathy (DN). The goal of our study was to investigate the functional roles of long intergenic noncoding RNA (lincRNA) 4930556M19Rik in DN. Material/Methods A DN cell model was constructed by exposing podocytes to high glucose (HG). A subcellular fraction assay was used to determine the level of 4930556M19Rik in the nucleus and cytoplasm of podocytes. Quantitative real-time polymerase chain reaction was used to evaluate expression of 4930556M19Rik and miR-27a-3p. Western blot assay was used to assessed levels of fibrosis-related proteins, podocin, and tissue inhibitor of metalloproteinase 3 (TIMP3). Flow cytometry analysis was performed to analyze cell apoptosis. Enzyme linked immunosorbent assay was used to examine secretion of inflammatory cytokines. Dual-luciferase reporter, RIP, and RNA pull-down assays were used to verify the relationship between miR-27a-3p and 4930556M19Rik or TIMP3. Results 4930556M19Rik was significantly decreased in HG-stimulated podocytes and mainly enriched in the cytoplasm of podocytes. Elevation of 4930556M19Rik hampered HG-induced cell apoptosis, fibrosis, and inflammatory in podocytes. 4930556M19Rik sponged miR-27a-3p to negatively modulate miR-27a-3p expression. MiR-27a-3p overexpression reversed the impact of 4930556M19Rik mediated cell progression in HG-induced podocytes. Moreover, TIMP3 was the target for miR-27a-3p and miR-27a-3p inhibition slowed podocyte injury by targeting TIMP3. Conclusions 4930556M19Rik overexpression slowed HG-induced podocyte injury by downregulating miR-27a-3p and upregulating TIMP3.
Collapse
Affiliation(s)
- Hong Fan
- Department of Endocrinology and Metabolism, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Weiwei Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
20
|
Jiao R, Jiang W, Wei X, Zhang M, Zhao S, Huang G. Clinicopathological significance and prognosis of long noncoding RNA SNHG16 expression in human cancers: a meta-analysis. BMC Cancer 2020; 20:662. [PMID: 32677912 PMCID: PMC7366298 DOI: 10.1186/s12885-020-07149-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Background Recent studies have highlighted the important role of long non-coding RNA SNHG16 in various human cancers. Here, we conducted a meta-analysis to investigate the effect of SNHG16 expression on clinicopathological features and prognosis in patients with different kinds of human cancers. Methods We performed a systematic search in electronic databases including PubMed, EMBASE, Cochrane Library and Web of Science, to investigate the potential association between SNHG16 expression and prognostic significance and clinical features in cancer patients. Odds ratios (ORs) or hazards ratios (HRs) with corresponding 95% confidence intervals (95% CIs) were pooled to estimate the prognosis value of SNHG16 by StataSE 15.0 software. Results A total of 16 eligible studies with 1299 patients were enrolled in our meta-analysis. The results revealed that increased expression level of SNHG16 was significantly associated with larger tumor size (OR: 3.357; 95% CI: 2.173–5.185; P < 0.001), advanced TNM stage (OR: 2.930; 95% CI: 1.522–5.640; P = 0.001) and poor histological grade (OR: 3.943; 95% CI: 1.955–7.952; P < 0.001), but not correlated with smoking status (P = 0.489), sex (P = 0.932), distant metastasis (P = 0.052), or lymph node metastasis (P = 0.155). Moreover, the pooled HR showed that elevated expression SNHG16 was associated with a significantly poorer overall survival (OS) (HR = 1.866, 95% CI: 1.571–2.216, P < 0.001). For the set of cancer types, high expression of SNHG16 was significantly associated with shorter OS in patients with cancers of the urinary system (HR: 2.523, 95% CI:1.540–4.133; P <0.001), digestive system (HR: 2.406, 95% CI:1.556–3.721; P <0.001), and other cancers (including glioma and non-small cell lung cancer) (HR: 1.786, 95% CI:1.406–2.267; P <0.001). Conclusions LncRNA SNHG16 overexpression might serve as an unfavorable prognostic factor, which provides a basis for medical workers to evaluate the prognosis of patients and to help the decision-making process.
Collapse
Affiliation(s)
- Ruonan Jiao
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Wei Jiang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xin Wei
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Mengpei Zhang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Si Zhao
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Guangming Huang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
21
|
Fan D, Kassiri Z. Biology of Tissue Inhibitor of Metalloproteinase 3 (TIMP3), and Its Therapeutic Implications in Cardiovascular Pathology. Front Physiol 2020; 11:661. [PMID: 32612540 PMCID: PMC7308558 DOI: 10.3389/fphys.2020.00661] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) is unique among the four TIMPs due to its extracellular matrix (ECM)-binding property and broad range of inhibitory substrates that includes matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAM with thrombospondin motifs (ADAMTSs). In addition to its metalloproteinase-inhibitory function, TIMP3 can interact with proteins in the extracellular space resulting in its multifarious functions. TIMP3 mRNA has a long 3' untranslated region (UTR) which is a target for numerous microRNAs. TIMP3 levels are reduced in various cardiovascular diseases, and studies have shown that TIMP3 replenishment ameliorates the disease, suggesting a therapeutic potential for TIMP3 in cardiovascular diseases. While significant efforts have been made in identifying the effector targets of TIMP3, the regulatory mechanism for the expression of this multi-functional TIMP has been less explored. Here, we provide an overview of TIMP3 gene structure, transcriptional and post-transcriptional regulators (transcription factors and microRNAs), protein structure and partners, its role in cardiovascular pathology and its application as therapy, while also drawing reference from TIMP3 function in other diseases.
Collapse
Affiliation(s)
- Dong Fan
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Jing Z, Ye X, Ma X, Hu X, Yang W, Shi J, Chen G, Gong L. SNGH16 regulates cell autophagy to promote Sorafenib Resistance through suppressing miR-23b-3p via sponging EGR1 in hepatocellular carcinoma. Cancer Med 2020; 9:4324-4338. [PMID: 32324343 PMCID: PMC7300419 DOI: 10.1002/cam4.3020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Tumor cells could acquire drug resistance through cell autophagy. This study aimed to explore the role of SNHG16 in sorafenib-resistant HCC cells and its mechanism with miR-23b-3p. METHODS The sorafenib-resistant Hep3B cell model was established. The SNHG16 and miR-23b-3p gene expressions were determined in normal HCC and sorafenib-resistant HCC tissues. Detection of the expression of SNHG16 and miR-23b-3p and its respective correlation with survival rate were performed. Target genes to SNHG16 and miR-23b-3p were predicted, and verified by dual-fluorescent reporter assay. The effects of SNHG16 and miR-23b-3p on SNHG16, miR-23b-3p, EGR1 expression, viability, apoptosis as well as LC3II/LC3 expression in Hep3B and Hep3B/So cells were detected by qRT-PCR, CCK-8, flow cytometry, and western blot. In in vivo studies, the NOD/SCID mice model was established to explore the effects of Hep3B and Hep3B/So cells with inhibited SNHG16 or miR-23b-3p on tumor size, EGR1 expression, and autophagy. RESULTS High SNHG16 expression in HCC-resistant tissues and low miR-23b-3p expression in all HCC tissues were detected, and the two were negatively correlated. Low SNHG16 and high miR-23b-3p were related to a high survival rate of HCC patients. Moreover, SNHG16 overexpression promoted Hep3B/So cell viability and autophagy, suppressed apoptosis by inhibiting miR-23b-3p expression through up-regulating EGR1, however, the effect of si-SNHG16 was opposite. In in vivo studies, miR-23b-3p inhibitor suppressed the high sorafenib sensitivity in Hep3B/So cells caused by SNHG16 silencing through promoting viability, autophagy, and suppressing apoptosis. CONCLUSION SNHG16 promotes Hep3B/So cell viability, autophagy, and inhibits apoptosis to maintain its resistance to sorafenib through regulating the expression of miR-23b-3p via sponging EGR1.
Collapse
Affiliation(s)
- Zhao Jing
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, China
| | - Xiaoping Ye
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiaojie Ma
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiangrong Hu
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenjun Yang
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Junping Shi
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Gongying Chen
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ling Gong
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
23
|
Yang M, Wei W. SNHG16: A Novel Long-Non Coding RNA in Human Cancers. Onco Targets Ther 2019; 12:11679-11690. [PMID: 32021246 PMCID: PMC6942535 DOI: 10.2147/ott.s231630] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/13/2019] [Indexed: 01/27/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have recently been considered as central regulators in diverse biological processes controlling tumorigenesis. Small nucleolar RNA host gene 16 (SNHG16) is an important tumor-associated lncRNA mainly involved in tumorigenesis and progression by competing with endogenous RNA (ceRNA) which sponges tumor-suppressive microRNA (miRNA), and by its recruitment mechanism. SNHG16 is overexpressed in tumor tissues and cell lines of different kinds of cancers, and its presence is associated with a poor clinical prognosis. Reviewing all publications about SNHG16 revealed that it plays a key role in the different hallmarks that define human cancer, including promoting proliferation, activating migration and invasion, inhibiting apoptosis, affecting lipid metabolism and chemoresistance. This review highlights the role that the aberrant expression of SNHG16 plays in the development and progression of cancer, and suggests that SNHG16 may function as a potential biomarker and therapeutic target for human cancers.
Collapse
Affiliation(s)
- Ming Yang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| |
Collapse
|
24
|
Role of SNHG16 in human cancer. Clin Chim Acta 2019; 503:175-180. [PMID: 31901482 DOI: 10.1016/j.cca.2019.12.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 01/27/2023]
Abstract
A growing body of evidence suggests that long non-coding RNAs (lncRNAs), a novel class of non-coding endogenous single-stranded RNA, play a key role in multiple physiological and pathological processes through transcriptional interference, post-transcriptional regulation, and epigenetic modification. Furthermore, many studies have shown that lncRNAs-as oncogenes or tumour suppressors-play an important role in the occurrence and development of human cancers. Small nucleolar RNA host gene 16 (SNHG16) was initially identified as an oncogenic lncRNA in neuroblastoma, and has since been identified as a carcinogenic regulator of various malignant tumours. Overexpression of SNHG16 is associated with clinical and pathological characteristics of cancer patients, and regulates cell proliferation, apoptosis, invasion and metastasis through a variety of potential mechanisms. Therefore, SNHG16 may be a promising biomarker and therapeutic target for cancers. In this review, we summarize the biological function, related mechanisms and potential clinical significance of SNHG16 in multiple human cancers.
Collapse
|
25
|
Chen Y, Chen X, Ding X, Wang Y. Afatinib, an EGFR inhibitor, decreases EMT and tumorigenesis of Huh‑7 cells by regulating the ERK‑VEGF/MMP9 signaling pathway. Mol Med Rep 2019; 20:3317-3325. [PMID: 31432165 PMCID: PMC6755195 DOI: 10.3892/mmr.2019.10562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Transcatheter arterial embolization (TAE) therapy has been used in the treatment of inoperable hepatocellular carcinoma (HCC). However, tumor recurrence and metastasis are common in patients after TAE, and these processes may be caused by circulating tumor cells (CTCs). Epithelial-mesenchymal transition (EMT) serves important roles in CTCs, and abnormal expression and activation of epidermal growth factor receptor (EGFR) is common in cancer cells. Afatinib is an EGFR-tyrosine kinase inhibitor (TKI). The present study aimed to investigate the effects of afatinib on EMT and tumorigenesis in HCC cells. Western blot analysis suggested that afatinib was able to effectively suppress overactivation of EGFR. Moreover, the expression levels of EMT- and metastasis-associated genes were found to be modulated by afatinib through EGFR inhibition. In addition, Cell Counting Kit-8 and Transwell assays suggested that the viability, migration and invasion of HCC cells were inhibited by afatinib through EGFR inhibition. Furthermore, the activity of the ERK signaling pathway and the expression levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP9) were decreased following treatment with afatinib in vitro. Collectively, the present results suggested that the inhibitory effects of afatinib on EMT and tumorigenesis may be associated with the ERK-VEGF/MMP9 signaling pathway. The present study provides new insights into understanding the mechanism underlying HCC and may facilitate the development of novel therapeutic strategies to treat HCC recurrence.
Collapse
Affiliation(s)
- Yafei Chen
- Department of Clinical Laboratory, Tiantai People's Hospital, Taizhou, Zhejiang 317200, P.R. China
| | - Xin Chen
- Department of Clinical Laboratory, Tiantai People's Hospital, Taizhou, Zhejiang 317200, P.R. China
| | - Xiaojun Ding
- Department of Clinical Laboratory, Tiantai People's Hospital, Taizhou, Zhejiang 317200, P.R. China
| | - Yingwei Wang
- Department of Clinical Laboratory, Tiantai People's Hospital, Taizhou, Zhejiang 317200, P.R. China
| |
Collapse
|