1
|
Song J, Yang H. Identifying new biomarkers and potential therapeutic targets for breast cancer through the integration of human plasma proteomics: a Mendelian randomization study and colocalization analysis. Front Endocrinol (Lausanne) 2024; 15:1449668. [PMID: 39351539 PMCID: PMC11439655 DOI: 10.3389/fendo.2024.1449668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Background The proteome is a crucial reservoir of targets for cancer treatment. While some targeted therapies have been developed, there are still significant challenges in early diagnosis and treatment, highlighting the need to identify new biomarkers and therapeutic targets for breast cancer. Therefore, we conducted a comprehensive proteome-wide Mendelian randomization (MR) study to identify novel biomarkers and potential therapeutic targets for breast cancer. Methods Protein quantitative trait locus (pQTL) data were extracted from two published plasma proteome-wide association studies. Genetic variants associated with breast cancer were obtained from the Breast Cancer Association Consortium, which included 133,384 cases and 113,789 controls, and the Finnish cohort study, comprising 18,786 cases and 182,927 controls. We employed summary-based MR and colocalization methods to identify potential drug targets for breast cancer, which were subsequently validated using a two-sample MR approach. Finally, a protein-protein interaction (PPI) network was constructed to detect interactions between the identified proteins and existing cancer drug targets. Results Gene-predicted levels of ten proteins were associated with breast cancer risk. Decreased levels of CASP8, DDX58, CPNE1, ULK3, PARK7, and BTN2A1, as well as increased levels of TNFRSF9, TNXB, DNPH1, and TLR1, were linked to an elevated risk of breast cancer. Among these, CASP8 and DDX58 were supported by tier-one evidence, while CPNE1, ULK3, PARK7, and TNFRSF9 received tier-two evidence support. The remaining proteins, TNXB, BTN2A1, DNPH1, and TLR1, were supported by tier-three evidence. CASP8, DDX58, CPNE1, ULK3, PARK7, and TNFRSF9 have already been identified as targets in drug development and potential therapeutic targets for breast cancer treatment. Additionally, ULK3 showed promise as a prognostic biomarker for breast cancer. Conclusions The present study identified several novel potential drug targets and biomarkers for breast cancer, providing new insights into its diagnosis and treatment. The integration of PPI and druggability evaluations enhances the prioritization of these therapeutic targets, paving the way for future drug development efforts.
Collapse
Affiliation(s)
- Jingshuang Song
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Huawei Yang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Li G, Ping M, Guo J, Wang J. Comprehensive analysis of CPNE1 predicts prognosis and drug resistance in gastric adenocarcinoma. Am J Transl Res 2024; 16:2233-2247. [PMID: 39006290 PMCID: PMC11236623 DOI: 10.62347/niyr2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/20/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Recent studies have confirmed that Copines-1 (CPNE1) is associated with many malignancies. However, the role of CPNE1 in stomach adenocarcinoma (STAD) is currently unclear. METHODS TIMER2.0, TCGA, UALCAN databases were used to investigate the expression of CPNE1 in STAD and normal tissues. KM-plotter database was used to explore the relationship between CPNE1 expression and prognosis in STAD. Immunohistochemistry (IHC) was used to assess the protein levels of CPNE1 in both normal and cancer tissues, as well as to confirm the prognostic significance of CPNE1. In order to assess the viability of CPNE1 as a divider, the Recipient Operating Characteristics (ROC) curve was employed and the assessment based on the AUC score (below the curve). To investigate the potential function of CPNE1, correlation analysis and enrichment analysis were performed with the clusterProfiler package in R software. The CPNE1 binding protein network was constructed by STRING and GeneMANIA. The relationship between methylation and prognosis was explored by Methsurv database. The Genomics of Drug Sensitivity in Cancer (GDSC) was employed to predict drug responsiveness in STAD. Ultimately, CCK-8 assays and RT-qPCR were performed to confirm the correlation between CPNE1 expression and the IC50 of Axitinib in the AGS cell line. RESULT CPNE1 is highly expressed in various cancers, including STAD. High expression of CPNE1 indicated poor overall survival (OS) of STAD (P < 0.05). The ROC curve suggested that CPNE1 was a potential diagnostic biomarker (AUC = 0.925). The functions of CPNE1 were enriched in DNA-acting catalytic activity, sulfur transferase activity, Ran GTPase binding, DNA helicase activity, helicase activity and eukaryotic ribosome biosynthesis. Hyper-methylated CPNE1 predicts better prognosis in STAD (P < 0.05). Additionally, STAD patients with high-expression CPNE1 seemed to be more resistant to the chemotherapeutic agents, including A-770041, WH-4-023, AZD-2281, AG-014699, AP-24534, Axitinib, AZD6244, RDEA119, AZD8055, Temsirolimus, Pazopanib and Roscovitine. In vitro experiments demonstrated the involvement of CPNE1 in Axitinib chemoresistance. CONCLUSION CPNE1 could be a predictive biomarker and a potential target for biological therapy in STAD.
Collapse
Affiliation(s)
- Guangyao Li
- Department of Gastrointestinal Surgery, The Second People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Miaomiao Ping
- School of Basic Medical Sciences, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Jizheng Guo
- School of Basic Medical Sciences, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Jin Wang
- Department of General Surgery, The Traditional Chinese Medicine Hospital of WuhuWuhu 241000, Anhui, China
| |
Collapse
|
3
|
Zhu S, Li R, Yin K, Wu L. CPNE1, A Potential Therapeutic Target in Nasopharyngeal Carcinoma, Affects Cell Growth and Radiation Resistance. Radiat Res 2024; 201:310-316. [PMID: 38355101 DOI: 10.1667/rade-23-00220.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The increased expression of Copine 1 (CPNE1) has been observed in various cancers, which promotes cell proliferation, apoptosis, and radio resistance. However, the potential mechanism of CPNE1 in nasopharyngeal carcinoma (NPC) remains elusive. Consequently, our objective was to investigate the role of CPNE1 in regulating proliferation and radio resistance of NPC. CPNE1 expression in NPC and normal patients were obtained from Cancer Genome Atlas (TCGA) database. An elevated CPNE1 was observed in NPC patients and cells (C666-1, SUNE-1, and HNE-1). Then, C666-1 and SUNE-1 cells were subjected to si-CPNE1 under different radiations (0-8 Gy). Cell growth and proliferation were measured by CCK8 and EDU assays, which demonstrated si-CPNE1 suppressed proliferation. Colony formation was performed to detect cell viability under different radiation therapy and survival curve of cell was plotted, which indicated that CPNE1 knockdown improved cell radiosensitivity. Additionally, flow cytometry showed silence of CPNE1 enhanced apoptosis rate in radiated cells. To further investigate the mechanisms of CPNE1 regulating NPC, the expression of activated phosphate Akt (p-Akt) was assessed through western blotting. We observed elevated p-Akt in si-CPNE1 transfected C666-1 and SUNE-1 cells. In conclusion, these results demonstrated that CPNE1 expression is elevated in nasopharyngeal carcinoma cells, and its silencing could attenuate nasopharyngeal carcinoma advancement and improve radiosensitivity to radiation therapy by controlling Akt activation.
Collapse
Affiliation(s)
- Shujuan Zhu
- Department of Radiotherapy Oncology, Anhui Jimin Cancer Hospital, Hefei, Anhui, 230001, China
| | - Rui Li
- Department of Radiotherapy Oncology, Anhui Jimin Cancer Hospital, Hefei, Anhui, 230001, China
| | - Kun Yin
- Department of Radiotherapy Oncology, Anhui Jimin Cancer Hospital, Hefei, Anhui, 230001, China
| | - Liming Wu
- Department of Radiotherapy Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| |
Collapse
|
4
|
Di Giuseppe F, Ricci-Vitiani L, Pallini R, Di Pietro R, Di Iorio P, Ascani G, Ciccarelli R, Angelucci S. Changes Induced by P2X7 Receptor Stimulation of Human Glioblastoma Stem Cells in the Proteome of Extracellular Vesicles Isolated from Their Secretome. Cells 2024; 13:571. [PMID: 38607010 PMCID: PMC11011151 DOI: 10.3390/cells13070571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Extracellular vesicles (EVs) are secreted from many tumors, including glioblastoma multiforme (GBM), the most common and lethal brain tumor in adults, which shows high resistance to current therapies and poor patient prognosis. Given the high relevance of the information provided by cancer cell secretome, we performed a proteomic analysis of microvesicles (MVs) and exosomes (EXOs) released from GBM-derived stem cells (GSCs). The latter, obtained from the brain of GBM patients, expressed P2X7 receptors (P2X7Rs), which positively correlate with GBM growth and invasiveness. P2X7R stimulation of GSCs caused significant changes in the EV content, mostly ex novo inducing or upregulating the expression of proteins related to cytoskeleton reorganization, cell motility/spreading, energy supply, protection against oxidative stress, chromatin remodeling, and transcriptional regulation. Most of the induced/upregulated proteins have already been identified as GBM diagnostic/prognostic factors, while others have only been reported in peripheral tumors. Our findings indicate that P2X7R stimulation enhances the transport and, therefore, possible intercellular exchange of GBM aggressiveness-increasing proteins by GSC-derived EVs. Thus, P2X7Rs could be considered a new druggable target of human GBM, although these data need to be confirmed in larger experimental sets.
Collapse
Affiliation(s)
- Fabrizio Di Giuseppe
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| | - Lucia Ricci-Vitiani
- Department of Medical, Oral and Biotechnological Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Roberto Pallini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Rome, Italy;
| | - Roberta Di Pietro
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy;
| | - Patrizia Di Iorio
- Department of Medicine and Aging Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Giuliano Ascani
- UOSD Maxillofacial Surgery, Azienda Sanitaria Locale di Pescara, Via Renato Paolini 47, 65124 Pescara, Italy;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
| | - Stefania Angelucci
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| |
Collapse
|
5
|
Xiang X, He Y, Zhang Z, Yang X. Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance. Nat Commun 2024; 15:2164. [PMID: 38461306 PMCID: PMC10925056 DOI: 10.1038/s41467-024-46480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.
Collapse
Affiliation(s)
- Xianke Xiang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Yao He
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Cancer Research Institute, Shenzhen Bay Lab, Shenzhen, 518132, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Yazdanpanah N, Jumentier B, Yazdanpanah M, Ong KK, Perry JRB, Manousaki D. Mendelian randomization identifies circulating proteins as biomarkers for age at menarche and age at natural menopause. Commun Biol 2024; 7:47. [PMID: 38184718 PMCID: PMC10771430 DOI: 10.1038/s42003-023-05737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Age at menarche (AAM) and age at natural menopause (ANM) are highly heritable traits and have been linked to various health outcomes. We aimed to identify circulating proteins associated with altered ANM and AAM using an unbiased two-sample Mendelian randomization (MR) and colocalization approach. By testing causal effects of 1,271 proteins on AAM, we identified 22 proteins causally associated with AAM in MR, among which 13 proteins (GCKR, FOXO3, SEMA3G, PATE4, AZGP1, NEGR1, LHB, DLK1, ANXA2, YWHAB, DNAJB12, RMDN1 and HPGDS) colocalized. Among 1,349 proteins tested for causal association with ANM using MR, we identified 19 causal proteins among which 7 proteins (CPNE1, TYMP, DNER, ADAMTS13, LCT, ARL and PLXNA1) colocalized. Follow-up pathway and gene enrichment analyses demonstrated links between AAM-related proteins and obesity and diabetes, and between AAM and ANM-related proteins and various types of cancer. In conclusion, we identified proteomic signatures of reproductive ageing in women, highlighting biological processes at both ends of the reproductive lifespan.
Collapse
Affiliation(s)
- Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Basile Jumentier
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Ken K Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - John R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Despoina Manousaki
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada.
- Departments of Pediatrics, Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
7
|
Sheng B, Zhao B, Dong Y, Zhang J, Wu S, Ji H, Zhu X. Copine 1 predicts poor clinical outcomes by promoting M2 macrophage activation in ovarian cancer. Carcinogenesis 2023; 44:748-759. [PMID: 37747823 PMCID: PMC10773812 DOI: 10.1093/carcin/bgad067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVE Copine 1 (CPNE1), a membrane-binding protein, influences the prognosis of various cancers. According to cBioPortal, CPNE1 amplification is a prevalent genetic mutation in ovarian cancer but with unknown oncogenic mechanism. METHODS This study analysed the CPNE1 expression in ovarian cancer using online datasets, as validated by immunohistochemistry (IHC), quantitative polymerase chain reaction (qPCR) and western blotting. Concurrently, the prognostic value of CPNE1 was accessed. Cell Counting Kit-8, colony formation, transwells and xenograft experiments were performed to evaluate the functions of CPNE1 during ovarian cancer carcinogenesis. CPNE1 and its related genes were analysed by g:Profiler and Tumour Immune Estimation Resource. Furthermore, human monocytic THP-1 cells were co-cultured with ES2 cells to investigate the effect of CPNE1 on macrophage polarization. RESULTS The results of bioinformatic analysis, IHC, qPCR and western blotting indicated a higher CPNE1 in ovarian cancer. CPNE1 overexpression demonstrated an association with a poor prognosis of ovarian cancer. Functionally, CPNE1 overexpression increased ES2 and SKOV3 cell proliferation, invasion and migration in vitro and promoted ovarian tumour xenograft growth in vivo, while CPNE1 knockdown led to opposite effects. Additionally, CPNE1 expression demonstrated an association with immune cell infiltration in ovarian cancer, especially macrophage. CPNE1 promoted protumour M2 macrophage polarization by upregulating cluster of differentiation 163 (CD163), CD206 and interleukin-10. CONCLUSIONS Our study revealed that CPNE1 mediated M2 macrophage polarization and provided a therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Bo Sheng
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Bo Zhao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yue Dong
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jiamin Zhang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Suni Wu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huihui Ji
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
8
|
Yin L, Cao R, Liu Z, Luo G, Li Y, Zhou X, Chen X, Wu Y, He J, Zu X, Shen Y. FUNDC2, a mitochondrial outer membrane protein, mediates triple-negative breast cancer progression via the AKT/GSK3β/GLI1 pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1770-1783. [PMID: 37700593 PMCID: PMC10679879 DOI: 10.3724/abbs.2023142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/12/2023] [Indexed: 09/14/2023] Open
Abstract
Triple-negative breast cancer (TNBC) lacks effective therapeutic targets and has a poor prognosis, easy recurrence and metastasis. It is urgent and important to explore TNBC treatment targets. Through mass spectrometry combined with qRT-PCR validation in luminal A cells and TNBC cells, high-content screening and clinical sample analysis, FUNDC2 was discovered as a novel target. The function of the outer mitochondrial membrane protein FUNDC2 in breast cancer is still unclear. In this study, we find that FUNDC2 expression in TNBC tissues is significantly higher than that in luminal subtype breast cancer tissues. FUNDC2 silencing in TNBC cells significantly reduces cell proliferation, migration and invasion. As demonstrated in vivo using subcutaneous tumor xenografts in mice, FUNDC2 suppression significantly inhibits tumor growth. The underlying mechanism might be mediated by inactivating its downstream signal AKT/GSK3β and GLI1, a key factor of the Hedgehog signaling pathway. Therefore, FUNDC2 may promote TNBC progression and provide a therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Liyang Yin
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Renxian Cao
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Zhuoqing Liu
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Gang Luo
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Yu Li
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Xiaolong Zhou
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Xiguang Chen
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Ying Wu
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Jun He
- Nanhua Affiliated HospitalDepartment of Spine SurgeryHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Xuyu Zu
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Yingying Shen
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| |
Collapse
|
9
|
Cotino-Nájera S, Herrera LA, Domínguez-Gómez G, Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front Pharmacol 2023; 14:1287505. [PMID: 38026933 PMCID: PMC10667487 DOI: 10.3389/fphar.2023.1287505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
One of the primary diseases that cause death worldwide is cancer. Cancer cells can be intrinsically resistant or acquire resistance to therapies and drugs used for cancer treatment through multiple mechanisms of action that favor cell survival and proliferation, becoming one of the leading causes of treatment failure against cancer. A promising strategy to overcome chemoresistance and radioresistance is the co-administration of anticancer agents and natural compounds with anticancer properties, such as the polyphenolic compound resveratrol (RSV). RSV has been reported to be able to sensitize cancer cells to chemotherapeutic agents and radiotherapy, promoting cancer cell death. This review describes the reported molecular mechanisms by which RSV sensitizes tumor cells to radiotherapy and chemotherapy treatment.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Luis A. Herrera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, México City, Mexico
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCAN), Ciudad de México, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
10
|
Cao J, Cao R, Liu Y, Dai T. CPNE1 mediates glycolysis and metastasis of breast cancer through activation of PI3K/AKT/HIF-1α signaling. Pathol Res Pract 2023; 248:154634. [PMID: 37454492 DOI: 10.1016/j.prp.2023.154634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023]
Abstract
CPNE1 regulates multiple signaling pathways and can stimulate cell proliferation and differentiation by activating the AKT-mTOR signaling pathway. In addition, CPNE1 is associated with various cancers; however, its role in breast cancer, particularly in TNBC, has not been fully elucidated. Our study aimed to reveal the impact of the CPNE1/PI3K/AKT/HIF-1α axis on TNBC. We first measured the expression of CPNE1 in the tumor tissues of TNBC patients and examined its prognostic value. Subsequently, we used sh-CPNE1 and overexpression vectors to transfect TNBC cell lines and analyzed cell viability, migration, and invasive abilities using colony formation and CCK-8 assays. Metabolites were analyzed through metabolomics. We found that higher expression of CPNE1 predicted poor prognosis in TNBC patients. Knockdown of CPNE1 reduced the viability, migration, invasion, and proliferation capabilities of TNBC cells. Furthermore, metabolomics analysis showed that glucose metabolism was the most dominant pathway, and knockdown of CPNE1 significantly limited the glycolytic activity of TNBC cells. We verified these conclusions in mouse models. Additionally, we overexpressed CPNE1 and treated TNBC cell lines with a PI3K inhibitor (LY294002). The results indicated that CPNE1 promoted aerobic glycolysis in TNBC cells through the PI3K/AKT/HIF-1α signaling pathway. This suggests that CPNE1 regulates cell glycolysis and participates in the development of TNBC. Our study may provide a new therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Jingying Cao
- Department of Medicine Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, PR China.
| | - Renxian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Tao Dai
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410013, Hunan Province, PR China.
| |
Collapse
|
11
|
Zhou H, He Y, Huang Y, Li R, Zhang H, Xia X, Xiong H. Comprehensive analysis of prognostic value, immune implication and biological function of CPNE1 in clear cell renal cell carcinoma. Front Cell Dev Biol 2023; 11:1157269. [PMID: 37077419 PMCID: PMC10106647 DOI: 10.3389/fcell.2023.1157269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Elevated expression of Copine-1 (CPNE1) has been proved in various cancers; however, the underlying mechanisms by which it affects clear cell renal cell carcinoma (ccRCC) are unclear.Methods: In this study, we applied multiple bioinformatic databases to analyze the expression and clinical significance of CPNE1 in ccRCC. Co-expression analysis and functional enrichment analysis were investigated by LinkedOmics, cBioPortal and Metascape. The relationships between CPNE1 and tumor immunology were explored using ESTIMATE and CIBERSORT method. In vitro experiments, CCK-8, wound healing, transwell assays and western blotting were conducted to investigate the effects of gain- or loss-of-function of CPNE1 in ccRCC cells.Results: The expression of CPNE1 was notably elevated in ccRCC tissues and cells, and significantly correlated with grade, invasion range, stage and distant metastasis. Kaplan–Meier and Cox regression analysis displayed that CPNE1 expression was an independent prognostic factor for ccRCC patients. Functional enrichment analysis revealed that CPNE1 and its co-expressed genes mainly regulated cancer-related and immune-related pathways. Immune correlation analysis showed that CPNE1 expression was significantly related to immune and estimate scores. CPNE1 expression was positively related to higher infiltrations of immune cells, such as CD8+ T cells, plasma cells and regulatory T cells, exhibited lower infiltrations of neutrophils. Meanwhile, elevated expression of CPNE1 was characterized by high immune infiltration levels, increased expression levels of CD8+ T cell exhaustion markers (CTLA4, PDCD1 and LAG3) and worse response to immunotherapy. In vitro functional studies demonstrated that CPNE1 promoted proliferation, migration and invasion of ccRCC cells through EGFR/STAT3 pathway.Conclusion: CPNE1 is a reliable clinical predictor for the prognosis of ccRCC and promotes proliferation and migration by activating EGFR/STAT3 signaling. Moreover, CPNE1 significantly correlates with immune infiltration in ccRCC.
Collapse
Affiliation(s)
- Haiting Zhou
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Xia
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Huihua Xiong,
| |
Collapse
|
12
|
Ma Y, Chen X, Ding T, Zhang H, Zhang Q, Dai H, Zhang H, Tang J, Wang X. KAT7 promotes radioresistance through upregulating PI3K/AKT signaling in breast cancer. JOURNAL OF RADIATION RESEARCH 2023; 64:448-456. [PMID: 36724120 PMCID: PMC10036104 DOI: 10.1093/jrr/rrac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/03/2022] [Indexed: 05/27/2023]
Abstract
Chromatin-modifying enzymes are commonly altered in cancers, but the molecular mechanism by which they regulate cancers remains poorly understood. Herein, we demonstrated that Lysine acetyltransferase 7 (KAT7) was upregulated in breast cancer. KAT7 expression negatively correlated with the survival of breast cancer patients, and KAT7 silencing suppressed breast cancer radioresistance in vitro. Mechanistically, KAT7 activated Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) transcription, leading to enhanced PI3K/AKT signaling and radioresistance. Overexpression of AKT or PIK3CA restored radioresistance suppression induced by KAT7 inhibition. Moreover, overexpression of KAT7, but not KAT7 acetyltransferase activity-deficient mutants promoted AKT phosphorylation at the Ser473 site, PIK3CA expression and radioresistance suppression due to KAT7 inhibition. In conclusion, KAT7 has huge prospects for clinical application as a new target for predicting radioresistance in breast cancer patients.
Collapse
Affiliation(s)
| | | | | | - Hanqun Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, P.R. China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, P.R. China
- Lanzhou Heavy Ion Hospital, Lanzhou, Gansu, 730000, P.R. China
| | - Huanyu Dai
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Haibo Zhang
- Oncology Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Xiaohu Wang
- Corresponding author. The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China. Tel: +8613909407551; E-mail:
| |
Collapse
|
13
|
Jia G, Ping J, Shu X, Yang Y, Cai Q, Kweon SS, Choi JY, Kubo M, Park SK, Bolla MK, Dennis J, Wang Q, Guo X, Li B, Tao R, Aronson KJ, Chan TL, Gao YT, Hartman M, Ho WK, Ito H, Iwasaki M, Iwata H, John EM, Kasuga Y, Kim MK, Kurian AW, Kwong A, Li J, Lophatananon A, Low SK, Mariapun S, Matsuda K, Matsuo K, Muir K, Noh DY, Park B, Park MH, Shen CY, Shin MH, Spinelli JJ, Takahashi A, Tseng C, Tsugane S, Wu AH, Yamaji T, Zheng Y, Dunning AM, Pharoah PDP, Teo SH, Kang D, Easton DF, Simard J, Shu XO, Long J, Zheng W. Genome- and transcriptome-wide association studies of 386,000 Asian and European-ancestry women provide new insights into breast cancer genetics. Am J Hum Genet 2022; 109:2185-2195. [PMID: 36356581 PMCID: PMC9748250 DOI: 10.1016/j.ajhg.2022.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
By combining data from 160,500 individuals with breast cancer and 226,196 controls of Asian and European ancestry, we conducted genome- and transcriptome-wide association studies of breast cancer. We identified 222 genetic risk loci and 137 genes that were associated with breast cancer risk at a p < 5.0 × 10-8 and a Bonferroni-corrected p < 4.6 × 10-6, respectively. Of them, 32 loci and 15 genes showed a significantly different association between ER-positive and ER-negative breast cancer after Bonferroni correction. Significant ancestral differences in risk variant allele frequencies and their association strengths with breast cancer risk were identified. Of the significant associations identified in this study, 17 loci and 14 genes are located 1Mb away from any of the previously reported breast cancer risk variants. Pathways analyses including 221 putative risk genes identified multiple signaling pathways that may play a significant role in the development of breast cancer. Our study provides a comprehensive understanding of and new biological insights into the genetics of this common malignancy.
Collapse
Affiliation(s)
- Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Xiang Shu
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea; Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sue K Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristan J Aronson
- Department of Public Health Sciences and Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China; Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mikael Hartman
- Department of Surgery, National University Hospital, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Weang Kee Ho
- Department of Applied Mathematics, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan; Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Aichi, Japan
| | - Esther M John
- Departments of Epidemiology, Cancer Prevention Institute of California, Fremont, CA, USA; Departments of Health Research and Policy, School of Medicine, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yoshio Kasuga
- Department of Surgery, Nagano Matsushiro General Hospital, Nagano, Japan
| | - Mi-Kyung Kim
- Division of Cancer Epidemiology and Management, National Cancer Center, Goyang, Korea
| | - Allison W Kurian
- Departments of Health Research and Policy, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China; Department of Surgery, University of Hong Kong, Hong Kong SAR, China; Department of Surgery, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Jingmei Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Artitaya Lophatananon
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK; Institute of Population Health, University of Manchester, Manchester, UK
| | - Siew-Kee Low
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan; Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK; Institute of Population Health, University of Manchester, Manchester, UK
| | - Dong-Young Noh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Boyoung Park
- Department of Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Min-Ho Park
- Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Chen-Yang Shen
- College of Public Health, China Medical University, Taichong, Taiwan; Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea
| | - John J Spinelli
- Department of Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC, Canada; School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Atsushi Takahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Chiuchen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shoichiro Tsugane
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Ying Zheng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia; Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpar, Malaysia
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval, Research Center, Québec City, QC, Canada
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA.
| |
Collapse
|
14
|
Yang J, Wang Y, Ge R, Jia X, Ge C, Cen Y, Pan D. Overexpression of Copines‐1 is associated with clinicopathological parameters and poor outcome in gastric cancer. J Clin Lab Anal 2022; 36. [DOI: 10.1002/jcla.24744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jun Yang
- Department of Cytopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
- Department of Pathology Ningbo Medical Center Lihuili Hospital Ningbo China
| | - Yingjing Wang
- Department of Histopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
| | - Rong Ge
- Department of Histopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
| | - Xiupeng Jia
- Department of Histopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
| | - Congshan Ge
- Department of Cytopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
- Department of Pathology Ningbo Medical Center Lihuili Hospital Ningbo China
| | - Youqing Cen
- Department of Cytopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
| | - Deng Pan
- Department of Cytopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
- Department of Pathology Ningbo Medical Center Lihuili Hospital Ningbo China
| |
Collapse
|
15
|
Adinew GM, Messeha S, Taka E, Soliman KFA. The Prognostic and Therapeutic Implications of the Chemoresistance Gene BIRC5 in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14215180. [PMID: 36358602 PMCID: PMC9659000 DOI: 10.3390/cancers14215180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chemoresistance affects TNBC patient treatment responses. Therefore, identifying the chemoresistant gene provides a new approach to understanding chemoresistance in TNBC. BIRC5 was examined in the current study as a tool for predicting the prognosis of TNBC patients and assisting in developing alternative therapies using online database tools. According to the examined studies, BIRC5 was highly expressed in 45 to 90% of TNBC patients. BIRC5 is not only abundantly expressed but also contributes to resistance to chemotherapy, anti-HER2 therapy, and radiotherapy. Patients with increased expression of BIRC5 had a median survival of 31.2 months compared to 85.8 months in low-expression counterparts (HR, 1.73; CI, 1.4−2.13; p = 2.5 × 10−7). The overall survival, disease-free survival, relapse-free survival, distant metastasis-free survival, and the complete pathological response of TNBC patients with high expression of BIRC5 who received any chemotherapy (Taxane, Ixabepilone, FAC, CMF, FEC, Anthracycline) and anti-HER2 therapy (Trastuzumab, Lapatinib) did not differ significantly from those patients receiving any other treatment. Data obtained indicate that the BIRC5 promoter region was substantially methylated, and hypermethylation was associated with higher BIRC5 mRNA expression (p < 0.05). The findings of this study outline the role of BIRC5 in chemotherapy-induced resistance of TNBC, further indicating that BIRC5 may serve as a promising prognostic biomarker that contributes to chemoresistance and could be a possible therapeutic target. Meanwhile, several in vitro studies show that flavonoids were highly effective in inhibiting BIRC5 in genetically diverse TNBC cells. Therefore, flavonoids would be a promising strategy for preventing and treating TNBC patients with the BIRC5 molecule.
Collapse
|
16
|
Li Y, Li L, Liu H, Zhou T. CPNE1 silencing inhibits cell proliferation and accelerates apoptosis in human gastric cancer. Eur J Pharm Sci 2022; 177:106278. [PMID: 35985444 DOI: 10.1016/j.ejps.2022.106278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
Gastric cancer is a heterogeneous disease accompanied by the alteration of various causative genes. The discovery of molecular targets and potential mechanisms of gastric cancer is valuable. Here we explored the biological function of CPNE1 and its molecular mechanisms in gastric cancer. Immunohistochemistry and Kaplan-Meier plotter database were used to identify that CPNE1 was upregulated in human gastric cancer and high expression of CPNE1 suggested a worse prognosis. Silencing CPNE1 could effectively suppress tumor proliferation, accelerate cell apoptosis and arrest cell cycle in vitro. CPNE1 knockdown mediating apoptosis by PARP-1 cleavage via caspase-3 and -7 activation through cytochrome c release from mitochondria in gastric cancer cells. Xenograft mouse model showed that targeted inhibition of CPNE1 slowed down the rate of tumor growth in vivo. We also verified that CPNE1 knockdown inhibited the activation of MAPK pathway mediated by DDIT3-FOS-MKNK2 axis. Specific inhibitor of DDIT3-FOS-MKNK2 axis could suppress gastric cancer cell proliferation, concomitant with knockdown of CPNE1. In conclusion, CPNE1 silencing inhibited gastric cancer growth via deactivating DDIT3-FOS-MKNK2 axis, which indicated that CPNE1 might serve as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Department of Gastroenterology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong 266035, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Han Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Tao Zhou
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
17
|
Su J, Huang Y, Wang Y, Li R, Deng W, Zhang H, Xiong H. CPNE1 is a potential prognostic biomarker, associated with immune infiltrates and promotes progression of hepatocellular carcinoma. Cancer Cell Int 2022; 22:67. [PMID: 35139863 PMCID: PMC8826718 DOI: 10.1186/s12935-022-02485-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/22/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Copine1 (CPNE1), the first discovered CPNE1 family member, participates in the process of carcinogenesis and development of diverse tumors. Our study aimed to investigate the expression and prognostic value of CPNE1 gene in hepatocellular carcinoma (HCC), to explore its functional network in HCC and its effects on biological behaviors. METHODS HCCDB, CCLE, HPA and LinkedOmics online databases were used to explore the expression of CPNE1 gene and analyze the co-expression network of CPNE1 in hepatocellular carcinoma. Gene set enrichment analysis (GSEA) was used for GO functional annotation, KEGG pathway enrichment analysis and regulators of CPNE1 networks in LIHC. HepG2 and MHCC-97H cells were selected to construct CPNE1 knockdown cell lines by transfection with siRNA, and Hep3B cell was selected to construct CPNE1 overexpression cell line by transfection with plasmid. The effect of CPNE1 on the proliferation of hepatocellular carcinoma cells was examined by CCK8 assay and clone formation assay; the effect of CPNE1 on the migration ability of hepatocellular carcinoma cells was assessed by cell scratch assay and Transwell cell migration assay; finally, the expression of related signaling pathway proteins was examined by Western Blot. The correlation of CPNE1 expression with immune infiltration and immune checkpoint molecules in HCC tissues was analyzed using TIMER online database and GSEA. RESULTS CPNE1 was highly expressed in HCC tissues and significantly correlated with sex, age, cancer stage and tumor grade. Overall survival (OS) was significantly lower in patients with high CPNE1 expression than in patients with low CPNE1 expression, and CPNE1 could be used as an independent prognostic indicator for HCC. Knockdown of CPNE1 gene inhibited the AKT/P53 pathway, resulting in decreased proliferation, migration and invasion of HCC cells. Overexpression of CPNE1 gene showed the opposite results. The level of CPNE1 expression in HCC was significantly and positively correlated with the level of infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells (P < 0.001). GSEA results also showed that CPNE1 of LIHC was involved in some immune response regulating signaling pathways. CONCLUSIONS Our study firstly found the expression of CPNE1 was significantly higher in LIHC tissues than in normal liver tissues, and high CPNE1 expression was associated with poor prognosis. In addition, we identified the possible mechanism by which CPNE1 functioned in LIHC. CPNE1 influenced AKT/P53 pathway activation and LIHC cell proliferation and migration. There was a significant correlation between CPNE1 expression and tumor immune infiltration in LIHC.
Collapse
Affiliation(s)
- Jinfang Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wanjun Deng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Wang Y, Zhang J, Zhong L, Huang S, Yu N, Ouyang L, Niu Y, Chen J, Lu C, He Q. Hsa-miR-335 enhances cell migration and invasion in lung adenocarcinoma through targeting Copine-1. MedComm (Beijing) 2021; 2:810-820. [PMID: 34977878 PMCID: PMC8706762 DOI: 10.1002/mco2.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022] Open
Abstract
Lung adenocarcinoma (LAC) is one of the most common pulmonary adenocarcinomas with a high peak of mortality, and metastasis is the main culprit of LAC deaths. microRNAs play important role in cancer metastasis, and thus are regarded as potential diagnostic and prognostic markers for human cancers. However, many miRNAs exhibit dual roles in diverse cellular contexts. Here, we revealed that hsa-miR-335, a previously reported tumor suppressor, exhibited an oncogenic role in LAC. Overexpression of miR-335 enhanced the abilities of A549 and H1299 cells to invade and migrate by regulating epithelial-mesenchymal transition, while inhibition of miR-335 exhibited an opposite effect in vitro and in vivo. Mechanically, miR-335 inhibited the expression of Copine-1 (CPNE1), an NF-κB suppressor, through interacting with its mRNA 3'UTR, while mutating the binding sites abolished this inhibitory effect. This finding not only highlights the suppressive effect of CPNE1 on cell motility, but also provides new insight into miR-335 in promoting LAC metastasis.
Collapse
Affiliation(s)
- Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
- The First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Li‐Ye Zhong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Shang‐Jia Huang
- Gastrointestinal SurgeryThe First People's Hospital of FoShanFoshanChina
| | - Nan‐Nan Yu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Lan Ouyang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Yu‐Long Niu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Jun‐Xiong Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Chun‐Hua Lu
- Research Laboratory of Zhuang & Yao MedicineGuangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Qing‐Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
- The First Affiliated HospitalJinan UniversityGuangzhouChina
| |
Collapse
|
19
|
Zhang L, Tan W, Song X, Wang S, Tang L, Chen Y, Yu H, Jiang P, Liu J. Methylprednisolone Attenuates Lipopolysaccharide-Induced Sepsis by Modulating the Small Nucleolar RNA Host Gene 5/Copine 1 Pathway. DNA Cell Biol 2021; 40:1396-1406. [PMID: 34767734 DOI: 10.1089/dna.2021.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sepsis has become a major public health problem worldwide. Methylprednisolone sodium succinate (MP) is a commonly used drug to prevent inflammation. However, the role and underlying mechanism of MP in sepsis remain vague. MP inhibited the lipopolysaccharide (LPS)-induced production of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-17 and suppressed cell growth in alveolar type II epithelial cells (ATII cells). Small nucleolar RNA host gene 5 (SNHG5) expression was inhibited by LPS and restored by MP. Upregulation of SNHG5 inhibited the cellular role of LPS in ATII cells, and further, downregulation of SNHG5 inhibited the cellular role of MP in ATII cells under LPS conditions. SNHG5 elevated the expression of Copine 1 (CPNE1) by enhancing the mRNA stability of CPNE1. Increasing CPNE1 expression restored the silenced SNHG5-induced inhibitor role of MP in ATII cells under LPS conditions. Finally, MP attenuated lung injury and TNF-α and IL-17 secretion in an LPS-induced sepsis mouse model. Overall, this study investigated the mechanism underlying the effect of MP treatment in sepsis and, for the first time, revealed the important role of the SNHG5/CPNE1 pathway in the development and treatment of sepsis and the potential to serve as a diagnostic and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinmiao Song
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanmei Wang
- Department of Emergency, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Tang
- Department of Central Laboratory, and Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hanqing Yu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
The regulation of CPNE1 ubiquitination by the NEDD4L is involved in the pathogenesis of non-small cell lung cancer. Cell Death Discov 2021; 7:336. [PMID: 34743202 PMCID: PMC8572224 DOI: 10.1038/s41420-021-00736-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Our previous studies revealed that oncogene CPNE1 is positively correlated with the occurrence, TNM stage, lymph node metastasis, and distant metastasis of non-small-cell lung cancer (NSCLC), and it could be regulated by micro RNAs. But no direct role of post-translational modification of CPNE1 in NSCLC has been reported. This study confirms that CPNE1 is degraded by two pathways: the ubiquitin-proteasome pathway and the autophagy-lysosome pathway. CPNE1 binds with the ubiquitin molecule via its K157 residue. Moreover, we determined that the ubiquitin ligase NEDD4L can mediate the ubiquitination of CPNE1 and promote its degradation. In addition, we find that NEDD4L knockdown promotes the proliferation and metastasis of NSCLC cells by regulating CPNE1 in vitro and vivo. This study aims to further investigate the mechanism of CPNE1 ubiquitination in the occurrence and development of NSCLC and provide a new potential target for NSCLC treatment.
Collapse
|
21
|
Tang H, Pang P, Qin Z, Zhao Z, Wu Q, Song S, Li F. The CPNE Family and Their Role in Cancers. Front Genet 2021; 12:689097. [PMID: 34367247 PMCID: PMC8345009 DOI: 10.3389/fgene.2021.689097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite significant advances in cancer research and treatment, the overall prognosis of lung cancer patients remains poor. Therefore, the identification for novel therapeutic targets is critical for the diagnosis and treatment of lung cancer. CPNEs (copines) are a family of membrane-bound proteins that are highly conserved, soluble, ubiquitous, calcium dependent in a variety of eukaryotes. Emerging evidences have also indicated CPNE family members are involved in cancer development and progression as well. However, the expression patterns and clinical roles in cancer have not yet been well understood. In this review, we summarize recent advances concerning CPNE family members and provide insights into new potential mechanism involved in cancer development.
Collapse
Affiliation(s)
- Haicheng Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Pei Pang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhu Qin
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhangyan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qingguo Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Feng Li
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Wu W, Wang C, Wang F, Wang Y, Jin Y, Luo J, Wang M, Zhang C, Wang S, Zhang F, Li M. Silencing the COPB2 gene decreases the proliferation, migration and invasion of human triple-negative breast cancer cells. Exp Ther Med 2021; 22:792. [PMID: 34093748 PMCID: PMC8170640 DOI: 10.3892/etm.2021.10224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is highly invasive, has a high rate of recurrence and is associated with a poor clinical outcome when compared with non-TNBC due to a lack of effective and targeted treatments. The coatomer protein complex subunit β2 (COPB2) is upregulated in various types of malignant cancer. The present study demonstrated that COPB2 expression levels were significantly upregulated in breast carcinoma HS-578T cells (clonal cells originating from TNBC) when compared with non-TNBC MCF-7 cells. HS-578T cells also exhibited higher rates of proliferation, invasion and transendothelial migration when compared with MCF-7 cells. Moreover, it was identified that genetically silencing the COPB2 gene using a lentivirus-short hairpin RNA inhibited the proliferative, colony formation, migratory and invasive properties of the TNBC HS-578T cells. Mediation of the COPB2 silencing effect may be associated with regulating the phosphorylation of serine/threonine kinase AKT in the PI3K/AKT signaling pathway. These results suggested the importance of COPB2 in promoting the proliferation of TNBC cells and identified COPB2 as a potential novel therapeutic target.
Collapse
Affiliation(s)
- Wencheng Wu
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chenyu Wang
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fengxia Wang
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yan Wang
- Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yanling Jin
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Luo
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Min Wang
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chenli Zhang
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shuya Wang
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fangfang Zhang
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Min Li
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Gansu Provincial Key Laboratory of Preclinical Study for New Drug Development, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
23
|
Sun X, He Z, Guo L, Wang C, Lin C, Ye L, Wang X, Li Y, Yang M, Liu S, Hua X, Wen W, Lin C, Long Z, Zhang W, Li H, Jian Y, Zhu Z, Wu X, Lin H. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:149. [PMID: 33931075 PMCID: PMC8086123 DOI: 10.1186/s13046-021-01932-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Background Radiotherapy is a conventional and effective local treatment for breast cancer. However, residual or recurrent tumors appears frequently because of radioresistance. Novel predictive marker and the potential therapeutic targets of breast cancer radioresistance needs to be investigated. Methods In this study, we screened all 10 asparagine-linked glycosylation (ALG) members in breast cancer patients’ samples by RT-PCR. Cell viability after irradiation (IR) was determined by CCK-8 assay and flow cytometry. The radiosensitivity of cell lines with different ALG3 expression was determined with the colony formation assay by fitting the multi-target single hit model to the surviving fractions. Cancer stem-like traits were assessed by RT-PCR, Western blot, and flow cytometry. The mechanisms of ALG3 influencing radiosensitivity was detected by Western blot and immunoprecipitation. And the effect of ALG3 on tumor growth after IR was verified in an orthotopic xenograft tumor models. The association of ALG3 with prognosis of breast cancer patients was confirmed by immunohistochemistry. Results ALG3 was the most significantly overexpressing gene among ALG family in radioresistant breast cancer tissue. Overexpression of ALG3 predicted poor clinicopathological characteristics and overall survival (OS), and early local recurrence-free survival (LRFS) in breast cancer patients. Upregulating ALG3 enhanced radioresistance and cancer stemness in vitro and in vivo. Conversely, silencing ALG3 increased the radiosensitivity and repressed cancer stemness in vitro, and more importantly inhibition of ALG3 effectively increased the radiosensitivity of breast cancer cells in vivo. Mechanistically, our results further revealed ALG3 promoted radioresistance and cancer stemness by inducing glycosylation of TGF-β receptor II (TGFBR2). Importantly, both attenuation of glycosylation using tunicamycin and inhibition of TGFBR2 using LY2109761 differentially abrogated the stimulatory effect of ALG3 overexpression on cancer stemness and radioresistance. Finally, our findings showed that radiation played an important role in preventing early recurrence in breast cancer patients with low ALG3 levels, but it had limited efficacy in ALG3-overexpressing breast cancer patients. Conclusion Our results suggest that ALG3 may serve as a potential radiosensitive marker, and an effective target to decrease radioresistance by regulating glycosylation of TGFBR2 in breast cancer. For patients with low ALG3 levels, radiation remains an effective mainstay therapy to prevent early recurrence in breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01932-8.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Zhenyu He
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Ling Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Caiqin Wang
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, People's Republic of China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Liping Ye
- Department of Experimental Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Xiaoqing Wang
- Department of Radiotherapy, Nanfang Hospital, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Meisongzhu Yang
- Department of Physiology, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Sailan Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xin Hua
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Wen Wen
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Chao Lin
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Zhiqing Long
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Wenwen Zhang
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Han Li
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yunting Jian
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Ziyuan Zhu
- Department of General surgery, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, 510150, Guangdong, People's Republic of China
| | - Xianqiu Wu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China. .,Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, Guangdong, People's Republic of China.
| | - Huanxin Lin
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
24
|
Makuch-Kocka A, Kocki J, Brzozowska A, Bogucki J, Kołodziej P, Płachno BJ, Bogucka-Kocka A. The BIRC Family Genes Expression in Patients with Triple Negative Breast Cancer. Int J Mol Sci 2021; 22:1820. [PMID: 33673050 PMCID: PMC7918547 DOI: 10.3390/ijms22041820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023] Open
Abstract
The BIRC (baculoviral IAP repeat-containing; BIRC) family genes encode for Inhibitor of Apoptosis (IAP) proteins. The dysregulation of the expression levels of the genes in question in cancer tissue as compared to normal tissue suggests that the apoptosis process in cancer cells was disturbed, which may be associated with the development and chemoresistance of triple negative breast cancer (TNBC). In our study, we determined the expression level of eight genes from the BIRC family using the Real-Time PCR method in patients with TNBC and compared the obtained results with clinical data. Additionally, using bioinformatics tools (Ualcan and The Breast Cancer Gene-Expression Miner v4.5 (bc-GenExMiner v4.5)), we compared our data with the data in the Cancer Genome Atlas (TCGA) database. We observed diverse expression pattern among the studied genes in breast cancer tissue. Comparing the expression level of the studied genes with the clinical data, we found that in patients diagnosed with breast cancer under the age of 50, the expression levels of all studied genes were higher compared to patients diagnosed after the age of 50. We observed that in patients with invasion of neoplastic cells into lymphatic vessels and fat tissue, the expression levels of BIRC family genes were lower compared to patients in whom these features were not noted. Statistically significant differences in gene expression were also noted in patients classified into three groups depending on the basis of the Scarff-Bloom and Richardson (SBR) Grading System.
Collapse
Affiliation(s)
- Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Janusz Kocki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-400 Lublin, Poland;
| | - Anna Brzozowska
- Department of Radiotherapy, St. John of Dukla Lublin Region Cancer Center, 20-090 Lublin, Poland;
| | - Jacek Bogucki
- Department of Organic Chemistry, Medical University of Lublin, 4A Chodźki St., 20-093 Lublin, Poland;
| | - Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.K.); (A.B.-K.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.K.); (A.B.-K.)
| |
Collapse
|
25
|
Wang Y, Pan S, He X, Wang Y, Huang H, Chen J, Zhang Y, Zhang Z, Qin X. CPNE1 Enhances Colorectal Cancer Cell Growth, Glycolysis, and Drug Resistance Through Regulating the AKT-GLUT1/HK2 Pathway. Onco Targets Ther 2021; 14:699-710. [PMID: 33536762 PMCID: PMC7850573 DOI: 10.2147/ott.s284211] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is a major cause of cancer-related mortality worldwide. Copines-1 (CPNE1) has been shown to be overexpressed in various cancers; however, the role of CPNE1 in CRC remains unknown. Therefore, it is of great importance to elucidate the role of CPNE1 in CRC and its underlying mechanism of action. Methods CPNE1 expression in CRC tissues was measured by quantitative real-time PCR and immunohistochemical (IHC) staining. CPNE1 was knocked down (KD) or overexpressed using small inferring RNAs or lentiviral transduction in CRC cells. The proliferation, apoptosis, glycolysis, and mitochondrial respiration of CRC cells were assessed by cell counting kit-8, flow cytometry, and Xfe24 extracellular flux analyzer assays, respectively. The role of CPNE1 in tumor growth and chemoresistance was further confirmed in xenograft and patient-derived tumor xenograft models, respectively. Results CPNE1 mRNA and protein were upregulated in CRC tissues. CPNE1 promoted proliferation, inhibited apoptosis, increased mitochondrial respiration, enhanced aerobic glycolysis by activating AKT signaling, upregulated glucose transporter 1 (GLUT1) and hexokinase 2 (HK2), and downregulated the production of cleaved Caspase-3 (c-Caspase 3). CPNE1 also contributed to chemoresistance in CRC cells. CPNE1 KD inhibited tumor growth and increased the sensitivity of tumors to oxaliplatin in vivo. Conclusion CPNE1 promotes CRC progression by activating the AKT-GLUT1/HK2 cascade and enhances chemoresistance.
Collapse
Affiliation(s)
- Yuexia Wang
- Department of General Surgery, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, People's Republic of China
| | - Shengli Pan
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai, People's Republic of China
| | - Xinhong He
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Ying Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Haozhe Huang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Junxiang Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yuhao Zhang
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai, People's Republic of China
| | - Zhijin Zhang
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai, People's Republic of China
| | - Xianju Qin
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Mañas-García L, Penedo-Vázquez A, López-Postigo A, Deschrevel J, Durán X, Barreiro E. Prolonged Immobilization Exacerbates the Loss of Muscle Mass and Function Induced by Cancer-Associated Cachexia through Enhanced Proteolysis in Mice. Int J Mol Sci 2020; 21:E8167. [PMID: 33142912 PMCID: PMC7663403 DOI: 10.3390/ijms21218167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that in mice with lung cancer (LC)-induced cachexia, periods of immobilization of the hindlimb (7 and 15 days) may further aggravate the process of muscle mass loss and function. Mice were divided into seven groups (n = 10/group): (1) non-immobilized control mice, (2) 7-day unloaded mice (7-day I), (3) 15-day unloaded mice (15-day I), (4) 21-day LC-cachexia group (LC 21-days), (5) 30-day LC-cachexia group (LC 30-days), (6) 21-day LC-cachexia group besides 7 days of unloading (LC 21-days + 7-day I), (7) 30-day LC-cachexia group besides 15 days of unloading (LC 30-days + 15-day I). Physiological parameters, body weight, muscle and tumor weights, phenotype and morphometry, muscle damage (including troponin I), proteolytic and autophagy markers, and muscle regeneration markers were identified in gastrocnemius muscle. In LC-induced cachexia mice exposed to hindlimb unloading, gastrocnemius weight, limb strength, fast-twitch myofiber cross-sectional area, and muscle regeneration markers significantly decreased, while tumor weight and area, muscle damage (troponin), and proteolytic and autophagy markers increased. In gastrocnemius of cancer-cachectic mice exposed to unloading, severe muscle atrophy and impaired function was observed along with increased muscle proteolysis and autophagy, muscle damage, and impaired muscle regeneration.
Collapse
Affiliation(s)
- Laura Mañas-García
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Antonio Penedo-Vázquez
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Adrián López-Postigo
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Jorieke Deschrevel
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Laboratory of Respiratory diseases and Thoracic Surgery, Department Chrometa, Catholic University of Leuven, B-3000 Leuven, Belgium
| | - Xavier Durán
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| |
Collapse
|
27
|
Peng W, Li JD, Zeng JJ, Zou XP, Tang D, Tang W, Rong MH, Li Y, Dai WB, Tang ZQ, Feng ZB, Chen G. Clinical value and potential mechanisms of COL8A1 upregulation in breast cancer: a comprehensive analysis. Cancer Cell Int 2020; 20:392. [PMID: 32818022 PMCID: PMC7427770 DOI: 10.1186/s12935-020-01465-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Background The situation faced by breast cancer patients, especially those with triple-negative breast cancer, is still grave. More effective therapeutic targets are needed to optimize the clinical management of breast cancer. Although collagen type VIII alpha 1 chain (COL8A1) has been shown to be downregulated in BRIP1-knockdown breast cancer cells, its clinical role in breast cancer remains unknown. Methods Gene microarrays and mRNA sequencing data were downloaded and integrated into larger matrices based on various platforms. Therefore, this is a multi-centered study, which contains 5048 breast cancer patients and 1161 controls. COL8A1 mRNA expression in breast cancer was compared between molecular subtypes. In-house immunohistochemistry staining was used to evaluate the protein expression of COL8A1 in breast cancer. A diagnostic test was performed to assess its clinical value. Furthermore, based on differentially expressed genes (DEGs) and co-expressed genes (CEGs) positively related to COL8A1, functional enrichment analyses were performed to explore the biological function and potential molecular mechanisms of COL8A1 underlying breast cancer. Results COL8A1 expression was higher in breast cancer patients than in control samples (standardized mean difference = 0.79; 95% confidence interval [CI] 0.55–1.03). Elevated expression was detected in various molecular subtypes of breast cancer. An area under a summary receiver operating characteristic curve of 0.80 (95% CI 0.76–0.83) with sensitivity of 0.77 (95% CI 0.69–0.83) and specificity of 0.70 (95% CI 0.61–0.78) showed moderate capacity of COL8A1 in distinguishing breast cancer patients from control samples. Worse overall survival was found in the higher than in the lower COL8A1 expression groups. Intersected DEGs and CEGs positively related to COL8A1 were significantly clustered in the proteoglycans in cancer and ECM-receptor interaction pathways. Conclusions Elevated COL8A1 may promote the migration of breast cancer by mediating the ECM-receptor interaction and synergistically interplaying with DEGs and its positively related CEGs independently of molecular subtypes. Several genes clustered in the proteoglycans in cancer pathway are potential targets for developing effective agents for triple-negative breast cancer.
Collapse
Affiliation(s)
- Wei Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Jian-Di Li
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Xiao-Ping Zou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Deng Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Wei Tang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, NO.71, Hedi Road, Nanning, Guangxi 530021 People's Republic of China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, NO.71, Hedi Road, Nanning, Guangxi 530021 People's Republic of China
| | - Ying Li
- Department of Pathology, Qinzhou First People's Hospital, NO.8, Ming Yang Street, Qinzhou, Guangxi 535001 People's Republic of China
| | - Wen-Bin Dai
- Department of Pathology, Liuzhou People's Hospital, NO.8, Wenchang Road, Chengzhong District, Liuzhou, Guangxi 545006 People's Republic of China
| | - Zhong-Qing Tang
- Department of Pathology, Wuzhou Workers' Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, NO.1, Nansanxiang Gaodi Road, Wuzhou, 543000 People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| |
Collapse
|
28
|
Shao Z, Ma X, Zhang Y, Sun Y, Lv W, He K, Xia R, Wang P, Gao X. CPNE1 predicts poor prognosis and promotes tumorigenesis and radioresistance via the AKT singling pathway in triple-negative breast cancer. Mol Carcinog 2020; 59:533-544. [PMID: 32181526 PMCID: PMC7187273 DOI: 10.1002/mc.23177] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
Elevated expression of Copine 1 (CPNE1) has been observed in multiple cancers; however, the underlying mechanisms by which it affects cancer cells are unclear. We aimed to study the effect of CPNE1 on the tumorigenesis and radioresistance of triple‐negative breast cancer (TNBC). Quantitative real‐time polymerase chain reaction was used to detect the expression of CPNE1 in TNBC tissues and cell lines. Western blot, immunohistochemistry, and immunofluorescence were used to investigate the levels of CPNE1, p‐AKT, AKT, cleaved caspase‐3, cleaved PARP1, and γ‐H2AX. Cell viability and apoptosis were measured by CCK‐8 and flow cytometry, respectively. CPNE1 was overexpressed in TNBC tissues and cell lines and was associated with tumor size, distant metastases, and survival rates of patients with TNBC. Moreover, function study shows that CPNE1 promoted cell viability and inhibited cell apoptosis in vitro and inhibited the radiosensitivity of TNBC. Importantly, inactivation of AKT signaling inhibited the tumorigenesis and radioresistance mediated by CPNE1 in TNBC cells. In vivo xenograft study also shows that CPNE1 knockdown inhibited tumor growth and promoted cell apoptosis. Overall, our findings suggest that CPNE1 promotes tumorigenesis and radioresistance in TNBC by regulating AKT activation and targeted CPNE1 expression may be a strategy to sensitize TNBC cells toward radiation therapy.
Collapse
Affiliation(s)
- Zhihong Shao
- Department of Radiology, Shibei hospital of Jing'an District of Shanghai, Shanghai, China
| | - Xiaolong Ma
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yufeng Zhang
- Department of Radiology, Luodian Hospital, Shanghai, China
| | - Yuanyuan Sun
- Department of Radiology, Luodian Hospital, Shanghai, China
| | - Wenjuan Lv
- Department of Radiology, Luodian Hospital, Shanghai, China
| | - Kuigang He
- Department of Radiology, Luodian Hospital, Shanghai, China
| | - Rui Xia
- Department of Radiology, Luodian Hospital, Shanghai, China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolong Gao
- Department of Radiology, Luodian Hospital, Shanghai, China
| |
Collapse
|