1
|
Bou-Gharios J, Noël G, Burckel H. The neglected burden of chronic hypoxia on the resistance of glioblastoma multiforme to first-line therapies. BMC Biol 2024; 22:278. [PMID: 39609830 PMCID: PMC11603919 DOI: 10.1186/s12915-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common adult primary brain tumor. The standard of care involves maximal surgery followed by radiotherapy and concomitant chemotherapy with temozolomide (TMZ), in addition to adjuvant TMZ. However, the recurrence rate of GBM within 1-2 years post-diagnosis is still elevated and has been attributed to the accumulation of multiple factors including the heterogeneity of GBM, genomic instability, angiogenesis, and chronic tumor hypoxia. Tumor hypoxia activates downstream signaling pathways involved in the adaptation of GBM to the newly oxygen-deprived environment, thereby contributing to the resistance and recurrence phenomena, despite the multimodal therapeutic approach used to eradicate the tumor. Therefore, in this review, we will focus on the development and implication of chronic or limited-diffusion hypoxia in tumor persistence through genetic and epigenetic modifications. Then, we will detail the hypoxia-induced activation of vital biological pathways and mechanisms that contribute to GBM resistance. Finally, we will discuss a proteomics-based approach to encourage the implication of personalized GBM treatments based on a hypoxia signature.
Collapse
Affiliation(s)
- Jolie Bou-Gharios
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
| | - Georges Noël
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
- Institut de Cancérologie Strasbourg Europe (ICANS), Department of Radiation Oncology, UNICANCER, 17 Rue Albert Calmette, Strasbourg, 67200, France
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France.
| |
Collapse
|
2
|
Kum Özşengezer S, Altun ZS, Sanlav G, Baran B, Kızmazoğlu D, Aktaş S, Keskinoğlu P, Olgun N. Investigation of YAP-1, OTX-2, and nestin protein expressions in neuroblastoma: a preliminary study. Ann Clin Transl Neurol 2024; 11:2153-2165. [PMID: 38925618 PMCID: PMC11330229 DOI: 10.1002/acn3.52136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES Neuroblastoma is the most common extracranial solid tumor in childhood. YAP (Yes-associated protein) is a highly expressed protein in NB. Nestin is an important marker of neuronal differentiation in NB. Orthodenticle homeobox (OTX) is a transcription factor and is overexpressed in blastoma-derived tumors. The aim of this study was to examine the potential roles of YAP-1, Nestin, and OTX-2 proteins in prognosis and risk stratification in neuroblastoma METHODS: Tumor sections of 56 patients with different NB risk groups were analyzed. YAP-1, Nestin, and OTX-2 protein expression levels were evaluated by immunohistochemical staining in NB patient tissue samples. RESULTS YAP-1, Nestin, and OTX-2 protein expression levels were evaluated together with the clinical findings of NB patients. YAP-1 was expressed in 18% of all tissues, while Nestin was expressed in 20.4%. OTX-2 protein expression was found in 41.1% of the NB patients. YAP-1 was expressed in 26.9% of high-risk and 11.5% of low-risk patients. Nestin was expressed in 24.4% high-risk and 33.3% low-risk patients. OTX-2 was expressed in 68.2% high-risk and 60% low-risk patients.YAP-1 was shown to provide survival advantages among risk groups. INTERPRETATION The findings of this study support that YAP-1 may be a potential prognostic biomarker for staging and risk-group assignment of NB patients. YAP-1 expression in neuroblastoma is associated with significantly poorer survival probabilities and should be considered as a potential therapeutic target. OTX-2 is a promising predictive biomarker candidate, but its mechanisms need further investigation in neuroblastoma, as nestin expression is not significantly linked to patient survival.
Collapse
Affiliation(s)
- Selen Kum Özşengezer
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Zekiye Sultan Altun
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Gamze Sanlav
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Burçin Baran
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Deniz Kızmazoğlu
- Department of Clinical OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
- Department of Pediatric OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
| | - Safiye Aktaş
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Pembe Keskinoğlu
- Department of Basic Medical Sciences, Department of Biostatistics and Medical InformaticsFaculty of Medicine, Dokuz Eylül UniversityIzmirTurkey
| | - Nur Olgun
- Department of Clinical OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
- Department of Pediatric OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
3
|
Kholodenko IV, Yarygin KN. Suppressive Effect of Chemically Induced Hypoxia on Glioblastoma Cell Proliferation. Bull Exp Biol Med 2023; 175:530-534. [PMID: 37768451 DOI: 10.1007/s10517-023-05900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 09/29/2023]
Abstract
Glioblastoma is a tumor characterized by pronounced hypoxia. Hypoxia produces diverse effects on tumor cells, and the results of experimental studies available so far are contradictory. In vitro hypoxia can be modeled in two ways: by reducing the level of atmospheric oxygen (physically induced hypoxia) or by using hypoxia-inducing chemicals such as cobalt chloride (II) (CoCl2) (chemically induced hypoxia). In the present work, we analyzed the effect of CoCl2 on the viability, proliferation, and apoptosis of cells of three glioblastoma cell lines: 1321N1, T98g, and U373 MG. It was shown that CoCl2 induced a dose-dependent decrease in cell viability and proliferation, and at high concentrations (200 and 400 μM) stimulated cell death. CoCl2 had no effect on the cytotoxic activity of doxorubicin in two cell lines T98g and U373 MG, and enhanced the effect of the chemotherapeutic agent on the 1321N1 cell line, though no synergistic cytotoxic effect of the two agents was observed.
Collapse
Affiliation(s)
- I V Kholodenko
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
4
|
Bustamante-Marin XM, Capel B. Oxygen availability influences the incidence of testicular teratoma in Dnd1Ter/+ mice. Front Genet 2023; 14:1179256. [PMID: 37180974 PMCID: PMC10169730 DOI: 10.3389/fgene.2023.1179256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Testicular teratomas and teratocarcinomas are the most common testicular germ cell tumors in early childhood and young men, and they are frequently found unilaterally in the left testis. In 129/SvJ mice carrying a heterozygous copy of the potent modifier of tumor incidence Ter, a point mutation in the dead-end homolog one gene (Dnd1 Ter/+), ∼70% of the unilateral teratomas arise in the left testis. We previously showed that in mice, left/right differences in vascular architecture are associated with reduced hemoglobin saturation and increased levels of the hypoxia inducible factor-1 alpha (HIF-1α) in the left compared to the right testis. To test the hypothesis that systemic reduction of oxygen availability in Dnd1 Ter/+ mice would lead to an increased incidence of bilateral tumors, we placed pregnant females from 129/SvJ Dnd1 Ter/+ intercross matings in a hypobaric chamber for 12-h intervals. Our results show that in 129/SvJ Dnd1 Ter/+ male gonads, the incidence of bilateral teratoma increased from 3.3% to 64% when fetuses were exposed to acute low oxygen conditions for 12-h between E13.8 and E14.3. The increase in tumor incidence correlated with the maintenance of high expression of pluripotency genes Oct4, Sox2 and Nanog, elevated activity of the Nodal signaling pathway, and suppression of germ cell mitotic arrest. We propose that the combination of heterozygosity for the Ter mutation and hypoxia causes a delay in male germ cell differentiation that promotes teratoma initiation.
Collapse
Affiliation(s)
- Ximena M. Bustamante-Marin
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Departamento Biomédico, Facultad de Ciencias De La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
5
|
Profiling and Bioinformatics Analyses of Differential Circular RNA Expression in Glioblastoma Multiforme Cells Under Hypoxia. J Mol Neurosci 2022; 72:2451-2463. [PMID: 36484975 DOI: 10.1007/s12031-022-02090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
The hypoxia microenvironment is highly associated with GBM's malignant phenotypes. CircRNAs were reported involved in GBM's biological characteristics and regulated by HIF-1α. However, the differential expression profile and role of circRNAs in GBM cells under hypoxia are still unclear. The expression profiles of circRNAs in LN229 and T98G under hypoxia were explored via circRNA sequencing analysis. Those circRNAs significantly dysregulated both in LN229 and T98G and could be found in circBase were selected and validated by qRT-PCR, RNase R digestion reaction, and Sanger sequencing. Normal cell line and fresh GBM tissues were also used for qRT-PCR validation. The roles of differentially expressed circRNAs were evaluated by bioinformatics analyses. There were 672 dysregulated circRNAs in LN229 and 698 dysregulated circRNAs in T98G. GO analysis indicated that the alteration of circRNA expression related to GBM cell's biogenesis and metabolism. KEGG analysis demonstrated that TGF-β signaling pathway, HIF-1 signaling pathway, and metabolism-related signaling pathway were closely associated with differentially expressed circRNAs under hypoxia. These results were confirmed by GSEA analysis. The 6 selected and dysregulated circRNAs both in LN229 and T98G including hsa_circ_0000745, hsa_circ_0020093, hsa_circ_0020094, hsa_circ_0000943, hsa_circ_0004874, and hsa_circ_0002359 were validated by qRT-PCR. Inhibition of hsa_circ_0000745 inhibited GBM cell's proliferation, migration, and invasion. HIF-1α centered circRNA-miRNA-mRNA networks analysis showed that the 6 validated circRNAs could cross-talk with 11 related miRNAs. The circRNA expressions are dysregulated in GBM cell under hypoxia. The 6 validated circRNAs could participate in GBM's development and progression when hypoxia occurs. They might be the candidates for prognostic markers and adjuvant therapeutics of GBM in the future.
Collapse
|
6
|
Mantile F, Kisovec M, Adamo G, Romancino DP, Hočevar M, Božič D, Bedina Zavec A, Podobnik M, Stoppelli MP, Kisslinger A, Bongiovanni A, Kralj-Iglič V, Liguori GL. A Novel Localization in Human Large Extracellular Vesicles for the EGF-CFC Founder Member CRIPTO and Its Biological and Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14153700. [PMID: 35954365 PMCID: PMC9367246 DOI: 10.3390/cancers14153700] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Tumor growth and metastasis strongly rely on cell–cell communication. One of the mechanisms by which tumor cells communicate involves the release and uptake of lipid membrane encapsulated particles full of bioactive molecules, called extracellular vesicles (EVs). EV exchange between cancer cells may induce phenotype changes in the recipient cells. Our work investigated the effect of EVs released by teratocarcinoma cells on glioblastoma (GBM) cells. EVs were isolated by differential centrifugation and analyzed through Western blot, nanoparticle tracking analysis, and electron microscopy. The effect of large EVs on GBM cells was tested through cell migration, proliferation, and drug-sensitivity assays, and resulted in a specific impairment in cell migration with no effects on proliferation and drug-sensitivity. Noticeably, we found the presence of the EGF-CFC founder member CRIPTO on both small and large EVs, in the latter case implicated in the EV-mediated negative regulation of GBM cell migration. Our data let us propose a novel route and function for CRIPTO during tumorigenesis, highlighting a complex scenario regulating its effect, and paving the way to novel strategies to control cell migration, to ultimately improve the prognosis and quality of life of GBM patients.
Collapse
Affiliation(s)
- Francesca Mantile
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati Traverso”, National Research Council (CNR) of Italy, 80131 Naples, Italy; (F.M.); (M.P.S.)
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (A.B.Z.); (M.P.)
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB), CNR, 90146 Palermo, Italy; (G.A.); (D.P.R.); (A.B.)
| | - Daniele P. Romancino
- Institute for Research and Biomedical Innovation (IRIB), CNR, 90146 Palermo, Italy; (G.A.); (D.P.R.); (A.B.)
| | - Matej Hočevar
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia;
| | - Darja Božič
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (D.B.); (V.K.-I.)
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (A.B.Z.); (M.P.)
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (A.B.Z.); (M.P.)
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati Traverso”, National Research Council (CNR) of Italy, 80131 Naples, Italy; (F.M.); (M.P.S.)
| | - Annamaria Kisslinger
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR) of Italy, 80131 Naples, Italy;
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation (IRIB), CNR, 90146 Palermo, Italy; (G.A.); (D.P.R.); (A.B.)
| | - Veronika Kralj-Iglič
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (D.B.); (V.K.-I.)
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Giovanna L. Liguori
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati Traverso”, National Research Council (CNR) of Italy, 80131 Naples, Italy; (F.M.); (M.P.S.)
- Correspondence:
| |
Collapse
|
7
|
Cui N, Han Q, Cao Q, Wang K, Zhou X, Hou P, Liu C, Chen L, Xu L. Lefty A is involved in sunitinib resistance of renal cell carcinoma cells via regulation of IL-8. Biol Chem 2021; 402:1247-1256. [PMID: 34363384 DOI: 10.1515/hsz-2021-0280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Renal cell carcinoma (RCC) is the third most frequent malignancy within urological oncology. Sunitinib has been used as the standard of treatment for first-line RCC therapy. Understanding mechanisms of sunitinib resistance in RCC cell is important for clinical therapy and drug development. We established sunitinib resistant RCC cells by treating cells with increasing concentrations of sunitinib and named resistant cells as RCC/SR. Lefty A, an important embryonic morphogen, was increased in RCC/SR cells. Targeted inhibition of Lefty via its siRNAs restored the sensitivity of renal resistant cells to sunitinib treatment. It was due to that si-Lefty can decrease the expression of interleukin-8 (IL-8) in RCC/SR cells. Knockdown of IL-8 abolished Lefty-regulated sunitinib sensitivity of RCC cells. Mechanistically, Lefty can regulate IL-8 transcription via activation of p65, one major transcription factor of IL-8. Collectively, our present revealed that Lefty A can regulate sunitinib sensitivity of RCC cells of via NF-κB/IL-8 signals. It indicated that targeted inhibition of Lefty might be a potent approach to overcome sunitinib resistance of RCC.
Collapse
Affiliation(s)
- Ning Cui
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Qiang Han
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Qizhen Cao
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Kejun Wang
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Xujia Zhou
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Pingzhi Hou
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Chao Liu
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Lungang Chen
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Lin Xu
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| |
Collapse
|
8
|
Szymańska-Chabowska A, Świątkowski F, Jankowska-Polańska B, Mazur G, Chabowski M. Nestin Expression as a Diagnostic and Prognostic Marker in Colorectal Cancer and Other Tumors. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211038256. [PMID: 34421318 PMCID: PMC8377314 DOI: 10.1177/11795549211038256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer, colon cancer, breast cancer, and prostate cancer are the leading causes of death in developed countries. Many cancers display non-specific signs in the early stage of the disease, thus making early diagnosis often difficult. We focused on nestin as a new biomarker of possible clinical importance in the early diagnosis and monitoring of cancer. The expression of nestin takes place at an early stage of neural differentiation, but no expression of the nestin gene can be revealed in normal, mature adult tissues. Nestin plays an important role in the development of the central nervous system and contributes to the organization and maintenance of cell shape. Nestin was found to be a marker of microvessel density, which in turn has proven to be a reliable prognostic factor for neoplastic malignancies in patients. Nestin expression correlates with an increased aggressiveness of tumor cells. The role of nestin in cancers of the colon and rectum, liver, central nervous system, lung cancer, breast cancer, melanoma, and other cancers has been reviewed in the literature. Associations between nestin expression and prognosis or drug-resistance may help in disease management. More research is needed to understand the molecular mechanisms of nestin expression and its role in possible targeted therapy.
Collapse
Affiliation(s)
- Anna Szymańska-Chabowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Filip Świątkowski
- Department of Surgery, 4th Military Teaching Hospital, Wroclaw, Poland
| | - Beata Jankowska-Polańska
- Division of Nervous System Diseases, Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, Wroclaw, Poland.,Division of Oncology and Palliative Care, Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|