1
|
Khine AA, Chen PC, Chen YH, Chu SC, Huang HS, Chu TY. Epidermal growth factor receptor ligands enriched in follicular fluid exosomes promote oncogenesis of fallopian tube epithelial cells. Cancer Cell Int 2024; 24:424. [PMID: 39709453 DOI: 10.1186/s12935-024-03614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Incessant ovulation is the main etiologic factor of ovarian high-grade serous carcinomas (HGSC), which mostly originate from the fallopian tube epithelium (FTE). Receptor tyrosine kinase (RTK) ligands essential for follicle development and ovulation wound repair were abundant in the follicular fluid (FF) and promoted the transformation of FTE cells. This study determined whether RTK ligands are present in FF exosomes and whether epidermal growth factor receptor (EGFR) signaling is essential for oncogenic activity. METHODS The FF of women undergoing in vitro fertilization was fractionated based on the richness of exosomes and tested for transformation toward FTE cells under different RTK inhibitors. EGFR ligands in FF exosomes were identified, and downstream signaling proteins in FTE cells were characterized. RESULTS The transforming activity of FF was almost exclusively enriched in exosomes, which possess a high capacity to induce anchorage-independent growth, clonogenicity, migration, invasion, and proliferation of FTE cells. EGFR inhibition abolished most of these activities. FF and FF exosome exposure markedly increased EGFR phosphorylation and the downstream signal proteins, including AKT, MAPK, and FAK. Multiple EGF family growth factors, such as amphiregulin, epiregulin, betacellulin, and transforming growth factor-alpha, were identified in FF exosomes. CONCLUSIONS Our results demonstrate that FF exosomes serve as carriers of EGFR ligands as well as ligands of other RTKs that mediate the transformation of FTE cells and underscore the need to further explore the content and roles of FF exosomes in HGSC development.
Collapse
Affiliation(s)
- Aye Aye Khine
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan, ROC
| | - Ying-Hsi Chen
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan, ROC
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Hualien, 970, Taiwan, ROC
- School of Medicine, College of Medicine, Hualien, 970, Taiwan, ROC
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC.
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC.
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan, ROC.
- School of Medicine, College of Medicine, Hualien, 970, Taiwan, ROC.
- Institute of Medical Science, Tzu Chi University, Hualien, 970, Taiwan, ROC.
| |
Collapse
|
2
|
Pan Y, Pan C, Zhang C. Unraveling the complexity of follicular fluid: insights into its composition, function, and clinical implications. J Ovarian Res 2024; 17:237. [PMID: 39593094 PMCID: PMC11590415 DOI: 10.1186/s13048-024-01551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Follicular fluid (FF) plays a vital role in the bidirectional communication between oocytes and granulosa cells (GCs), regulating and promoting oocyte growth and development. This fluid constitutes a complex microenvironment, rich in various molecules including hormones, growth factors, cytokines, lipids, proteins, and extracellular vesicles. Understanding the composition and metabolic profile of follicular fluid is important for investigating ovarian pathologies such as polycystic ovary syndrome (PCOS) and endometriosis. Additionally, analyzing follicular fluid can offer valuable insights into oocyte quality, aiding in optimal oocyte selection for in vitro fertilization (IVF). This review provides an overview of follicular fluid composition, classification of its components and discusses the influential components of oocyte development. It also highlights the role of follicular fluid in the pathogenesis and diagnosis of ovarian diseases, along with potential follicular fluid biomarkers for assessing oocyte quality. By understanding the intricate relationship between follicular fluid and oocyte development, we can advance fertility research and improve clinical outcomes for infertility patients.
Collapse
Affiliation(s)
- Yurong Pan
- Nanchang University Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Chenyu Pan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chunping Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330019, China.
| |
Collapse
|
3
|
Madakkatel I, Lumsden AL, Mulugeta A, Mäenpää J, Oehler MK, Hyppönen E. Large-scale analysis to identify risk factors for ovarian cancer. Int J Gynecol Cancer 2024:ijgc-2024-005424. [PMID: 39084694 DOI: 10.1136/ijgc-2024-005424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVE Ovarian cancer is characterized by late-stage diagnoses and poor prognosis. We aimed to identify factors that can inform prevention and early detection of ovarian cancer. METHODS We used a data-driven machine learning approach to identify predictors of epithelial ovarian cancer from 2920 input features measured 12.6 years (IQR 11.9 to 13.3 years) before diagnoses. Analyses included 221 732 female participants in the UK Biobank without a history of cancer. During the follow-up 1441 women developed ovarian cancer. For factors that contributed to model prediction, we used multivariate logistic regression to evaluate the association with ovarian cancer, with evidence for causality tested by Mendelian randomization (MR) analyses in the Ovarian Cancer Genetics Consortium (25 509 cases). RESULTS Greater parity and ever-use of oral contraception were associated with lower ovarian cancer risk (ever vs never OR 0.74, 95% CI 0.66 to 0.84). After adjustment for established risk factors, greater height, weight, and greater red blood cell distribution width were associated with increased ovarian cancer risk, while higher aspartate aminotransferase levels and mean corpuscular volume were associated with lower risk. MR analyses confirmed observational associations with anthropometric/adiposity traits (eg, body fat percentage per standard deviation (SD); OR inverse-variance weighted (ORIVW) 1.28, 95% CI 1.13 to 1.46) and aspartate aminotransferase (ORIVW 0.87, 95% CI 0.78 to 0.98). MR also provided genetic evidence for a protective association of higher total serum protein on ovarian cancer, higher lymphocyte count on serous and endometrioid ovarian cancer, and greater forced expiratory volume in 1 s on serous ovarian cancer among other findings. CONCLUSIONS This study shows that certain risk factors for ovarian cancer are modifiable, suggesting that weight reduction and interventions to reduce the number of ovulations may provide potential for future prevention. We also identified blood biomarkers associated with ovarian cancer years before diagnoses, warranting further investigation.
Collapse
Affiliation(s)
- Iqbal Madakkatel
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Amanda L Lumsden
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Anwar Mulugeta
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Department of Pharmacology and Clinical Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Johanna Mäenpää
- Faculty of Medicine and Medical Technology, Tampere University, Tampere, Finland
| | - Martin K Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Elina Hyppönen
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Scalia P, Marino IR, Asero S, Pandini G, Grimberg A, El-Deiry WS, Williams SJ. Autocrine IGF-II-Associated Cancers: From a Rare Paraneoplastic Event to a Hallmark in Malignancy. Biomedicines 2023; 12:40. [PMID: 38255147 PMCID: PMC10813354 DOI: 10.3390/biomedicines12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The paraneoplastic syndrome referred in the literature as non-islet-cell tumor hypoglycemia (NICTH) and extra-pancreatic tumor hypoglycemia (EPTH) was first reported almost a century ago, and the role of cancer-secreted IGF-II in causing this blood glucose-lowering condition has been widely established. The landscape emerging in the last few decades, based on molecular and cellular findings, supports a broader role for IGF-II in cancer biology beyond its involvement in the paraneoplastic syndrome. In particular, a few key findings are constantly observed during tumorigenesis, (a) a relative and absolute increase in fetal insulin receptor isoform (IRA) content, with (b) an increase in IGF-II high-molecular weight cancer-variants (big-IGF-II), and (c) a stage-progressive increase in the IGF-II autocrine signal in the cancer cell, mostly during the transition from benign to malignant growth. An increasing and still under-exploited combinatorial pattern of the IGF-II signal in cancer is shaping up in the literature with respect to its transducing receptorial system and effector intracellular network. Interestingly, while surgical and clinical reports have traditionally restricted IGF-II secretion to a small number of solid malignancies displaying paraneoplastic hypoglycemia, a retrospective literature analysis, along with publicly available expression data from patient-derived cancer cell lines conveyed in the present perspective, clearly suggests that IGF-II expression in cancer is a much more common event, especially in overt malignancy. These findings strengthen the view that (1) IGF-II expression/secretion in solid tumor-derived cancer cell lines and tissues is a broader and more common event compared to the reported IGF-II association to paraneoplastic hypoglycemia, and (2) IGF-II associates to the commonly observed autocrine loops in cancer cells while IGF-I cancer-promoting effects may be linked to its paracrine effects in the tumor microenvironment. Based on these evidence-centered considerations, making the autocrine IGF-II loop a hallmark for malignant cancer growth, we here propose the functional name of IGF-II secreting tumors (IGF-IIsT) to overcome the view that IGF-II secretion and pro-tumorigenic actions affect only a clinical sub-group of rare tumors with associated hypoglycemic symptoms. The proposed scenario provides an updated logical frame towards biologically sound therapeutic strategies and personalized therapeutic interventions for currently unaccounted IGF-II-producing cancers.
Collapse
Affiliation(s)
- Pierluigi Scalia
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
| | - Ignazio R. Marino
- Department of Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Salvatore Asero
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
- ARNAS Garibaldi, UOC Chirurgia Oncologica, Nesima, 95122 Catania, Italy
| | - Giuseppe Pandini
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
| | - Adda Grimberg
- Perelman School of Medicine, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wafik S. El-Deiry
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
| | - Stephen J. Williams
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|