1
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. How Many Alzheimer-Perusini's Atypical Forms Do We Still Have to Discover? Biomedicines 2023; 11:2035. [PMID: 37509674 PMCID: PMC10377159 DOI: 10.3390/biomedicines11072035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer-Perusini's (AD) disease represents the most spread dementia around the world and constitutes a serious problem for public health. It was first described by the two physicians from whom it took its name. Nowadays, we have extensively expanded our knowledge about this disease. Starting from a merely clinical and histopathologic description, we have now reached better molecular comprehension. For instance, we passed from an old conceptualization of the disease based on plaques and tangles to a more modern vision of mixed proteinopathy in a one-to-one relationship with an alteration of specific glial and neuronal phenotypes. However, no disease-modifying therapies are yet available. It is likely that the only way to find a few "magic bullets" is to deepen this aspect more and more until we are able to draw up specific molecular profiles for single AD cases. This review reports the most recent classifications of AD atypical variants in order to summarize all the clinical evidence using several discrimina (for example, post mortem neurofibrillary tangle density, cerebral atrophy, or FDG-PET studies). The better defined four atypical forms are posterior cortical atrophy (PCA), logopenic variant of primary progressive aphasia (LvPPA), behavioral/dysexecutive variant and AD with corticobasal degeneration (CBS). Moreover, we discuss the usefulness of such classifications before outlining the molecular-genetic aspects focusing on microglial activity or, more generally, immune system control of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
2
|
Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int J Mol Sci 2022; 23:ijms231810970. [PMID: 36142879 PMCID: PMC9504248 DOI: 10.3390/ijms231810970] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset Alzheimer's disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor protein (APP) cleavage, it can also affect other processes, such as Notch signaling, β-cadherin processing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment. In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines; however, some mutations could not be categorized because they were detected only in a single case, and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and possible significant residues of the protein.
Collapse
|
3
|
Koga S, Josephs KA, Aiba I, Yoshida M, Dickson DW. Neuropathology and emerging biomarkers in corticobasal syndrome. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328586. [PMID: 35697501 PMCID: PMC9380481 DOI: 10.1136/jnnp-2021-328586] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Corticobasal syndrome (CBS) is a clinical syndrome characterised by progressive asymmetric limb rigidity and apraxia with dystonia, myoclonus, cortical sensory loss and alien limb phenomenon. Corticobasal degeneration (CBD) is one of the most common underlying pathologies of CBS, but other disorders, such as progressive supranuclear palsy (PSP), Alzheimer's disease (AD) and frontotemporal lobar degeneration with TDP-43 inclusions, are also associated with this syndrome.In this review, we describe common and rare neuropathological findings in CBS, including tauopathies, synucleinopathies, TDP-43 proteinopathies, fused in sarcoma proteinopathy, prion disease (Creutzfeldt-Jakob disease) and cerebrovascular disease, based on a narrative review of the literature and clinicopathological studies from two brain banks. Genetic mutations associated with CBS, including GRN and MAPT, are also reviewed. Clinicopathological studies on neurodegenerative disorders associated with CBS have shown that regardless of the underlying pathology, frontoparietal, as well as motor and premotor pathology is associated with CBS. Clinical features that can predict the underlying pathology of CBS remain unclear. Using AD-related biomarkers (ie, amyloid and tau positron emission tomography (PET) and fluid biomarkers), CBS caused by AD often can be differentiated from other causes of CBS. Tau PET may help distinguish AD from other tauopathies and non-tauopathies, but it remains challenging to differentiate non-AD tauopathies, especially PSP and CBD. Although the current clinical diagnostic criteria for CBS have suboptimal sensitivity and specificity, emerging biomarkers hold promise for future improvements in the diagnosis of underlying pathology in patients with CBS.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Aichi, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
4
|
Shea YF, Pan Y, Mak HKF, Bao Y, Lee SC, Chiu PKC, Chan HWF. A systematic review of atypical Alzheimer's disease including behavioural and psychological symptoms. Psychogeriatrics 2021; 21:396-406. [PMID: 33594793 DOI: 10.1111/psyg.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the commonest cause of dementia, characterized by the clinical presentation of progressive anterograde episodic memory impairment. However, atypical presentation of patients is increasingly recognized. These atypical AD include logopenic aphasia, behavioural variant AD, posterior cortical atrophy, and corticobasal syndrome. These atypical AD are more common in patients with young onset AD before the age of 65 years old. Since medical needs (including the behavioural and psychological symptoms of dementia) of atypical AD patients could be different from typical AD patients, it is important for clinicians to be aware of these atypical forms of AD. In addition, disease modifying treatment may be available in the future. This review aims at providing an update on various important subtypes of atypical AD including behavioural and psychological symptoms.
Collapse
Affiliation(s)
- Yat-Fung Shea
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Yining Pan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Henry Ka-Fung Mak
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yiwen Bao
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shui-Ching Lee
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Patrick Ka-Chun Chiu
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Hon-Wai Felix Chan
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| |
Collapse
|
5
|
Arienti F, Lazzeri G, Vizziello M, Monfrini E, Bresolin N, Saetti MC, Picillo M, Franco G, Di Fonzo A. Unravelling Genetic Factors Underlying Corticobasal Syndrome: A Systematic Review. Cells 2021; 10:171. [PMID: 33467748 PMCID: PMC7830591 DOI: 10.3390/cells10010171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Corticobasal syndrome (CBS) is an atypical parkinsonian presentation characterized by heterogeneous clinical features and different underlying neuropathology. Most CBS cases are sporadic; nevertheless, reports of families and isolated individuals with genetically determined CBS have been reported. In this systematic review, we analyze the demographical, clinical, radiological, and anatomopathological features of genetically confirmed cases of CBS. A systematic search was performed using the PubMed, EMBASE, and Cochrane Library databases, included all publications in English from 1 January 1999 through 1 August 2020. We found forty publications with fifty-eight eligible cases. A second search for publications dealing with genetic risk factors for CBS led to the review of eight additional articles. GRN was the most common gene involved in CBS, representing 28 out of 58 cases, followed by MAPT, C9ORF72, and PRNP. A set of symptoms was shown to be significantly more common in GRN-CBS patients, including visuospatial impairment, behavioral changes, aphasia, and language alterations. In addition, specific demographical, clinical, biochemical, and radiological features may suggest mutations in other genes. We suggest a diagnostic algorithm to help in identifying potential genetic cases of CBS in order to improve the diagnostic accuracy and to better understand the still poorly defined underlying pathogenetic process.
Collapse
Affiliation(s)
- Federica Arienti
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Neuroscience Section, University of Milan, 20122 Milan, Italy; (F.A.); (G.L.); (M.V.); (E.M.); (M.C.S.)
| | - Giulia Lazzeri
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Neuroscience Section, University of Milan, 20122 Milan, Italy; (F.A.); (G.L.); (M.V.); (E.M.); (M.C.S.)
| | - Maria Vizziello
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Neuroscience Section, University of Milan, 20122 Milan, Italy; (F.A.); (G.L.); (M.V.); (E.M.); (M.C.S.)
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Neuroscience Section, University of Milan, 20122 Milan, Italy; (F.A.); (G.L.); (M.V.); (E.M.); (M.C.S.)
| | - Nereo Bresolin
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy; (N.B.); (G.F.)
| | - Maria Cristina Saetti
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Neuroscience Section, University of Milan, 20122 Milan, Italy; (F.A.); (G.L.); (M.V.); (E.M.); (M.C.S.)
| | - Marina Picillo
- Center for Neurodegenerative Diseases, Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, 84084 Salerno, Italy;
| | - Giulia Franco
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy; (N.B.); (G.F.)
| | - Alessio Di Fonzo
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy; (N.B.); (G.F.)
| |
Collapse
|
6
|
Ganguly J, Jog M. Tauopathy and Movement Disorders-Unveiling the Chameleons and Mimics. Front Neurol 2020; 11:599384. [PMID: 33250855 PMCID: PMC7674803 DOI: 10.3389/fneur.2020.599384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
The spectrum of tauopathy encompasses heterogenous group of neurodegenerative disorders characterized by neural or glial deposition of pathological protein tau. Clinically they can present as cognitive syndromes, movement disorders, motor neuron disease, or mixed. The heterogeneity in clinical presentation, genetic background, and underlying pathology make it difficult to classify and clinically approach tauopathy. In the literature, tauopathies are thus mostly highlighted from pathological perspective. From clinical standpoint, cognitive syndromes are often been focussed while reviewing tauopathies. However, the spectrum of tauopathy has also evolved significantly in the domain of movement disorders and has transgressed beyond the domain of primary tauopathies. Secondary tauopathies from neuroinflammation or autoimmune insults and some other "novel" tauopathies are increasingly being reported in the current literature, while some of them are geographically isolated. Because of the overlapping clinical phenotypes, it often becomes difficult for the clinician to diagnose them clinically and have to wait for the pathological confirmation by autopsy. However, each of these tauopathies has some clinical and radiological signatures those can help in clinical diagnosis and targeted genetic testing. In this review, we have exposed the heterogeneity of tauopathy from a movement disorder perspective and have provided a clinical approach to diagnose them ante mortem before confirmatory autopsy. Additionally, phenotypic variability of these disorders (chameleons) and the look-alikes (mimics) have been discussed with potential clinical pointers for each of them. The review provides a framework within which new and as yet undiscovered entities can be classified in the future.
Collapse
Affiliation(s)
| | - Mandar Jog
- Movement Disorder Centre, London Health Sciences Centre, University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
López-García S, Jiménez-Bonilla J, López Delgado A, Orizaola Balaguer P, Infante Ceberio J, Banzo Marraco I, Rodríguez Rodríguez E, Sánchez-Juan P. A Rare PSEN1 (Leu85Pro) Mutation Causing Alzheimer’s Disease in a 29-Year-Old Woman Presenting as Corticobasal Syndrome. J Alzheimers Dis 2019; 70:655-658. [DOI: 10.3233/jad-190107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sara López-García
- Department of Neurology, University Hospital Marqués de Valdecilla, Santander, Spain
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
- Universidad de Cantabria (UC), Santander, Spain
| | - Julio Jiménez-Bonilla
- Department of Nuclear Medicine, University Hospital Marqués de Valdecilla, Santander, Spain
| | - Anjana López Delgado
- Department of Neurophysiology, University Hospital Marqués de Valdecilla, Santander, Spain
| | | | - Jon Infante Ceberio
- Department of Neurology, University Hospital Marqués de Valdecilla, Santander, Spain
| | - Ignacio Banzo Marraco
- Department of Nuclear Medicine, University Hospital Marqués de Valdecilla, Santander, Spain
| | | | - Pascual Sánchez-Juan
- Department of Neurology, University Hospital Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
8
|
Genetic mimics of the non-genetic atypical parkinsonian disorders – the ‘atypical’ atypical. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:327-351. [DOI: 10.1016/bs.irn.2019.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Lam B, Khan A, Keith J, Rogaeva E, Bilbao J, St. George‐Hyslop P, Ghani M, Freedman M, Stuss DT, Chow T, Black SE, Masellis M. Characterizing familial corticobasal syndrome due to Alzheimer's disease pathology and
PSEN1
mutations. Alzheimers Dement 2016; 13:520-530. [DOI: 10.1016/j.jalz.2016.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Benjamin Lam
- L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre University of Toronto Toronto Ontario 33
- Brain Sciences Research Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
- Division of Neurology, Department of Medicine University of Toronto Toronto Ontario Canada
| | - Aun Khan
- Ziauddin University Karachi Pakistan
| | - Julia Keith
- Department of Anatomical Pathology, Sunnybrook Health Sciences Centre University of Toronto Toronto Ontario Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Disease Toronto Ontario Canada
| | - Juan Bilbao
- Department of Anatomical Pathology, Sunnybrook Health Sciences Centre University of Toronto Toronto Ontario Canada
| | - Peter St. George‐Hyslop
- Tanz Centre for Research in Neurodegenerative Disease Toronto Ontario Canada
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences University of Cambridge Cambridge UK
| | - Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Disease Toronto Ontario Canada
| | - Morris Freedman
- Division of Neurology, Department of Medicine University of Toronto Toronto Ontario Canada
- Sam and Ida Ross Memory Clinic Baycrest Toronto Ontario Canada
- Rotman Research Institute, Baycrest University of Toronto Toronto Ontario Canada
- Toronto Dementia Research Alliance Toronto Ontario Canada
| | - Donald T. Stuss
- Brain Sciences Research Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
- Division of Neurology, Department of Medicine University of Toronto Toronto Ontario Canada
- Rotman Research Institute, Baycrest University of Toronto Toronto Ontario Canada
- Department of Psychology University of Toronto Toronto Ontario Canada
- Ontario Brain Institute Toronto Ontario Canada
| | - Tiffany Chow
- Division of Neurology, Department of Medicine University of Toronto Toronto Ontario Canada
- Sam and Ida Ross Memory Clinic Baycrest Toronto Ontario Canada
- Rotman Research Institute, Baycrest University of Toronto Toronto Ontario Canada
| | - Sandra E. Black
- L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre University of Toronto Toronto Ontario 33
- Brain Sciences Research Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
- Division of Neurology, Department of Medicine University of Toronto Toronto Ontario Canada
- Rotman Research Institute, Baycrest University of Toronto Toronto Ontario Canada
- Toronto Dementia Research Alliance Toronto Ontario Canada
| | - Mario Masellis
- L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre University of Toronto Toronto Ontario 33
- Brain Sciences Research Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
- Division of Neurology, Department of Medicine University of Toronto Toronto Ontario Canada
- Toronto Dementia Research Alliance Toronto Ontario Canada
| |
Collapse
|
10
|
Parmera JB, Rodriguez RD, Studart Neto A, Nitrini R, Brucki SMD. Corticobasal syndrome: A diagnostic conundrum. Dement Neuropsychol 2016; 10:267-275. [PMID: 29213468 PMCID: PMC5619264 DOI: 10.1590/s1980-5764-2016dn1004003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/20/2016] [Indexed: 11/21/2022] Open
Abstract
Corticobasal syndrome (CBS) is an atypical parkinsonian syndrome of great interest to movement disorder specialists and behavioral neurologists. Although originally considered a primary motor disorder, it is now also recognized as a cognitive disorder, usually presenting cognitive deficits before the onset of motor symptoms. The term CBS denotes the clinical phenotype and is associated with a heterogeneous spectrum of pathologies. Given that disease-modifying agents are targeting the pathologic process, new diagnostic methods and biomarkers are being developed to predict the underlying pathology. The heterogeneity of this syndrome in terms of clinical, radiological, neuropsychological and pathological aspects poses the main challenge for evaluation.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Behavioral and Cognitive Neurology Unit, Department of
Neurology, University of São Paulo, Brazil
| | - Roberta Dieh Rodriguez
- Behavioral and Cognitive Neurology Unit, Department of
Neurology, University of São Paulo, Brazil
| | - Adalberto Studart Neto
- Behavioral and Cognitive Neurology Unit, Department of
Neurology, University of São Paulo, Brazil
| | - Ricardo Nitrini
- Behavioral and Cognitive Neurology Unit, Department of
Neurology, University of São Paulo, Brazil
| | - Sonia Maria Dozzi Brucki
- Behavioral and Cognitive Neurology Unit, Department of
Neurology, University of São Paulo, Brazil
| |
Collapse
|