1
|
Debove I, Paschen S, Amstutz D, Cardoso F, Corvol JC, Fung VSC, Lang AE, Martinez Martin P, Rodríguez-Oroz MC, Weintraub D, Krack P, Deuschl G. Management of Impulse Control and Related Disorders in Parkinson's Disease: An Expert Consensus. Mov Disord 2024; 39:235-248. [PMID: 38234035 DOI: 10.1002/mds.29700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Impulse-control and related behavioral disorders (ICBDs) significantly impact the lives of Parkinson's disease (PD) patients and caregivers, with lasting consequences if undiagnosed and untreated. While ICBD pathophysiology and risk factors are well-studied, a standardized severity definition and treatment evidence remain elusive. OBJECTIVE This work aimed to establish international expert consensus on ICBD treatment strategies. To comprehensively address diverse treatment availabilities, experts from various continents were included. METHODS From 2021 to 2023, global movement disorders specialists engaged in a Delphi process. A core expert group initiated surveys, involving a larger panel in three iterations, leading to refined severity definitions and treatment pathways. RESULTS Experts achieved consensus on defining ICBD severity, emphasizing regular PD patient screenings for early detection. General treatment recommendations focused on continuous monitoring, collaboration with significant others, and seeking specialist advice for legal or financial challenges. For mild to severe ICBDs, gradual reduction in dopamine agonists was endorsed, followed by reductions in other PD medications. Second-line treatment strategies included diverse approaches like reversing the last medication change, cognitive behavior therapy, subthalamic nucleus deep brain stimulation, and specific medications like quetiapine, clozapine, and antidepressants. The panel reached consensus on distinct treatment pathways for punding and dopamine dysregulation syndrome, formulating therapy recommendations. Comprehensive discussions addressed management strategies for the exacerbation of either motor or non-motor symptoms following the proposed treatments. CONCLUSION The consensus offers in-depth insights into ICBD management, presenting clear severity criteria and expert consensus treatment recommendations. The study highlights the critical need for further research to enhance ICBD management. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ines Debove
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Steffen Paschen
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Deborah Amstutz
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Francisco Cardoso
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jean-Christophe Corvol
- Department of Neurology, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Pablo Martinez Martin
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain
| | | | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parkinson's Disease Research, Education and Clinical Center (PADRECC and MIRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Paul Krack
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
2
|
Ohm DT, Rhodes E, Bahena A, Capp N, Lowe M, Sabatini P, Trotman W, Olm CA, Phillips J, Prabhakaran K, Rascovsky K, Massimo L, McMillan C, Gee J, Tisdall MD, Yushkevich PA, Lee EB, Grossman M, Irwin DJ. Neuroanatomical and cellular degeneration associated with a social disorder characterized by new ritualistic belief systems in a TDP-C patient vs. a Pick patient. Front Neurol 2023; 14:1245886. [PMID: 37900607 PMCID: PMC10600461 DOI: 10.3389/fneur.2023.1245886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 10/31/2023] Open
Abstract
Frontotemporal dementia (FTD) is a spectrum of clinically and pathologically heterogenous neurodegenerative dementias. Clinical and anatomical variants of FTD have been described and associated with underlying frontotemporal lobar degeneration (FTLD) pathology, including tauopathies (FTLD-tau) or TDP-43 proteinopathies (FTLD-TDP). FTD patients with predominant degeneration of anterior temporal cortices often develop a language disorder of semantic knowledge loss and/or a social disorder often characterized by compulsive rituals and belief systems corresponding to predominant left or right hemisphere involvement, respectively. The neural substrates of these complex social disorders remain unclear. Here, we present a comparative imaging and postmortem study of two patients, one with FTLD-TDP (subtype C) and one with FTLD-tau (subtype Pick disease), who both developed new rigid belief systems. The FTLD-TDP patient developed a complex set of values centered on positivity and associated with specific physical and behavioral features of pigs, while the FTLD-tau patient developed compulsive, goal-directed behaviors related to general themes of positivity and spirituality. Neuroimaging showed left-predominant temporal atrophy in the FTLD-TDP patient and right-predominant frontotemporal atrophy in the FTLD-tau patient. Consistent with antemortem cortical atrophy, histopathologic examinations revealed severe loss of neurons and myelin predominantly in the anterior temporal lobes of both patients, but the FTLD-tau patient showed more bilateral, dorsolateral involvement featuring greater pathology and loss of projection neurons and deep white matter. These findings highlight that the regions within and connected to anterior temporal lobes may have differential vulnerability to distinct FTLD proteinopathies and serve important roles in human belief systems.
Collapse
Affiliation(s)
- Daniel T. Ohm
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emma Rhodes
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Alejandra Bahena
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Noah Capp
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - MaKayla Lowe
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip Sabatini
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Winifred Trotman
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A. Olm
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeffrey Phillips
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Karthik Prabhakaran
- Penn Image Computing and Science Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Katya Rascovsky
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - James Gee
- Penn Image Computing and Science Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - M. Dylan Tisdall
- Center for Advanced Magnetic Resonance Imaging and Spectroscopy, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Paul A. Yushkevich
- Penn Image Computing and Science Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Edward B. Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - David J. Irwin
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|