1
|
Gülersoy E, Balıkçı C, Şahan A, Günal İ, Atlı MO. NMR-based metabolomic investigation of dogs with acute flaccid paralysis due to tick paralysis. Vet Med Sci 2024; 10:e1528. [PMID: 38952268 PMCID: PMC11217601 DOI: 10.1002/vms3.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Acute flaccid paralysis (AFP) is a complex clinical syndrome with various aetiologies. If untreated, AFP may lead to death due to failure of respiratory muscles. Tick paralysis, which is a noninfectious neurologic syndrome of AFP, occurs following tick attachment, engorgement, and injection of tick saliva toxins. There is no specific diagnostic test for tick paralysis, and mortality increases as definitive diagnosis is delayed. Although metabolomic investigation of tick saliva was conducted, there is a lack of research on metabolomic evaluation of hosts affected by tick paralysis. OBJECTIVES Thus, the aim of this study is to investigate metabolomic changes in serum samples of dogs with tick paralysis due to Rhipicephalus sanguineus using NMR-based metabolomics and to identify potential diagnostic/prognostic markers. MATERIALS AND METHODS Forty dogs infested with R. sanguineus, with clinical findings compatible with AFP and with a confirmed tick paralysis diagnosis ex juvantibus, constituted the Paralysis Group. Ten healthy dogs, which were admitted either for vaccination and/or check-up purposes, constituted the Control Group. After the confirmation tick paralysis, medical history, vaccination and nutritional status, body surface area and estimated tick numbers of all the dogs were noted. Physical examination included body temperature, heart and respiratory rate, capillary refill time evaluation and Modified Glasgow Coma Scale calculation. Serum samples were extracted from venous blood samples of all the dogs and were prepared for NMR analysis, and NMR-based metabolomics identification and quantification were performed. RESULTS NMR-based serum metabolomics of the present study revealed distinct up/down-regulated expressions, presenting a promising avenue. Moreover, it was observed that energy metabolism and especially liver functions were impaired in dogs with tick paralysis, and not only the respiratory system but also the kidneys were affected. CONCLUSION It was concluded that the present approach may help to better understand the pathological mechanisms developing in cases of AFP due to tick paralysis.
Collapse
Affiliation(s)
- Erdem Gülersoy
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Canberk Balıkçı
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Adem Şahan
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - İsmail Günal
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Mehmet Osman Atlı
- Veterinary FacultyDepartment of Reproduction and Artificial InseminationHarran UniversityŞanlıurfaTurkey
| |
Collapse
|
2
|
Sharma PK, Aram A, Pandian V, Polaka Y. Wilson's Disease in an Early Adolescent: Classic Magnetic Resonance Imaging Findings. Cureus 2024; 16:e58092. [PMID: 38738008 PMCID: PMC11088745 DOI: 10.7759/cureus.58092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Wilson's disease (WD), alternatively termed hepatolenticular degeneration, represents a rare autosomal recessive disorder typified by disrupted copper metabolism, culminating in copper accumulation across various organs. WD commonly manifests with early-onset liver cirrhosis, with notable involvement of the central nervous system, particularly impacting the midbrain and basal ganglia. This case report delineates the clinical presentation of an early adolescent female with WD, accentuating classical magnetic resonance imaging (MRI) findings. These MRI findings, which include the "face of a giant panda sign" and the "Face of a miniature panda sign," are pivotal for expeditious diagnosis. Recognition of these classical signs underscores the indispensable role of MRI in elucidating the neurological dimensions of WD.
Collapse
Affiliation(s)
- Praveen K Sharma
- Department of Radiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arun Aram
- Department of Radiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vinoth Pandian
- Department of Radiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Yashaswinii Polaka
- Department of Radiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Yu-Taeger L, El-Ayoubi A, Qi P, Danielyan L, Nguyen HHP. Intravenous MSC-Treatment Improves Impaired Brain Functions in the R6/2 Mouse Model of Huntington's Disease via Recovered Hepatic Pathological Changes. Cells 2024; 13:469. [PMID: 38534313 DOI: 10.3390/cells13060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Huntington's disease (HD), a congenital neurodegenerative disorder, extends its pathological damages beyond the nervous system. The systematic manifestation of HD has been extensively described in numerous studies, including dysfunction in peripheral organs and peripheral inflammation. Gut dysbiosis and the gut-liver-brain axis have garnered greater emphasis in neurodegenerative research, and increased plasma levels of pro-inflammatory cytokines have been identified in HD patients and various in vivo models, correlating with disease progression. In the present study, we investigated hepatic pathological markers in the liver of R6/2 mice which convey exon 1 of the human mutant huntingtin gene. Furthermore, we evaluated the impact of intravenously administered Mesenchymal Stromal Cells (MSCs) on the liver enzymes, changes in hepatic inflammatory markers, as well as brain pathology and behavioral deficits in R6/2 mice. Our results revealed altered enzyme expression and increased levels of inflammatory mediators in the liver of R6/2 mice, which were significantly attenuated in the MSC-treated R6/2 mice. Remarkably, neuronal pathology and altered motor activities in the MSC-treated R6/2 mice were significantly ameliorated, despite the absence of MSCs in the postmortem brain. Our data highlight the importance of hepatic pathological changes in HD, providing a potential therapeutic approach. Moreover, the data open new perspectives for the search in blood biomarkers correlating with liver pathology in HD.
Collapse
Affiliation(s)
- Libo Yu-Taeger
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Ali El-Ayoubi
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Pengfei Qi
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany
- Departments of Biochemistry and Clinical Pharmacology, and Neuroscience Laboratory, Yerevan State Medical University, Yerevan 0025, Armenia
| | - Hoa Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany
- Department of Medical Chemistry, Yerevan State Medical University, Yerevan 0025, Armenia
| |
Collapse
|
4
|
Lai SW, Cheng YC, Huang WC, Yadav VK, Fong IH, Yeh CT, Yang CK, Lee WH, Chen MY. Dysregulated expression of slingshot protein phosphatase 1 (SSH1) disrupts circadian rhythm and WNT signaling associated to hepatocellular carcinoma pathogenesis. Aging (Albany NY) 2023; 15:11033-11051. [PMID: 37837551 PMCID: PMC10637823 DOI: 10.18632/aging.205064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/21/2023] [Indexed: 10/16/2023]
Abstract
Growing evidence underscores the circadian rhythm's essential function in liver stability and disease. Its disruption is progressively linked with metabolic issues, oncogene triggers, and heightened cancer susceptibility. Research points to slingshot protein phosphatase 1 (SSH1), a modulator of cofilin-1 (CFL-1), as instrumental in the reformation of the actin cytoskeleton, thereby impacting the invasiveness of various cancer types. Yet, the dynamics of SSH1's influence on liver cell stemness and circadian activity remain unclear. Through in-silico, tissue analysis, and functional assays, the study reveals a significant SSH1 expression in HCC samples, compared to non-cancerous counterparts, across six HCC platforms (AUC between 0.62 and 0.77, p < 0.01). The aberrant expression of SSH1 was correlated with poor patients' survival (HR = 1.70, p = 0.0063) and progression-free (HR = 1.477, p = 0.0187) survival rates. Targeting SSH1, either via Sennoside A or CRISPR SSH1 in Huh7 cells (Huh7-SSH1-/-) significantly suppressed cell viability, migration, invasion, colony and tumorsphere formation of the Huh7-SSH1-/- cells. Mechanistically, we showed that downregulated SSH1 expression suppressed CLOCK, BMAL1, WNT3, β-catenin, LRP5/6, BCL2, VIM and Snail, with concomitant upregulated CFL-1/2, and CRY1 expression, indicating dysregulated circadian rhythm and WNT/β-catenin oncogenic pathway deactivation. Treatments in reflected notable tumor size reductions in the mice treated with SenAlight (1.76-fold, p < 0.01) and SenAdark (3.79-fold, p < 0.01). The expression of SSH1, CLOCK, BMAL1 and β-catenin proteins were significantly downregulated in the SenAlight and SenAdark mice; this was more so in the SenAdark mice. This reveals a potential treatment approach for HCC patients.
Collapse
Affiliation(s)
- Shiue-Wei Lai
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Yi-Chiao Cheng
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Wen-Chien Huang
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Vijesh Kumar Yadav
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Iat-Hang Fong
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chi-Tai Yeh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 235, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Ching-Kuo Yang
- Division of Colorectal Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei City 110, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 235, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
5
|
Zhu L, Yin H, Wang Y, Yang W, Dong T, Xu L, Hou Z, Shi Q, Shen Q, Lin Z, Zhao H, Xu Y, Chen Y, Wu J, Yu Z, Wen M, Huang J. Disrupted topological organization of the motor execution network in Wilson's disease. Front Neurol 2022; 13:1029669. [PMID: 36479050 PMCID: PMC9721349 DOI: 10.3389/fneur.2022.1029669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVE There are a number of symptoms associated with Wilson's disease (WD), including motor function damage. The neuropathological mechanisms underlying motor impairments in WD are, however, little understood. In this study, we explored changes in the motor execution network topology in WD. METHODS We conducted resting-state functional magnetic resonance imaging (fMRI) on 38 right-handed individuals, including 23 WD patients and 15 healthy controls of the same age. Based on graph theory, a motor execution network was constructed and analyzed. In this study, global, nodal, and edge topological properties of motor execution networks were compared. RESULTS The global topological organization of the motor execution network in the two groups did not differ significantly across groups. In the cerebellum, WD patients had a higher nodal degree. At the edge level, a cerebello-thalamo-striato-cortical circuit with altered functional connectivity strength in WD patients was observed. Specifically, the strength of the functional connections between the cerebellum and thalamus increased, whereas the cortical-thalamic, cortical-striatum and cortical-cerebellar connections exhibited a decrease in the strength of the functional connection. CONCLUSION There is a disruption of the topology of the motor execution network in WD patients, which may be the potential basis for WD motor dysfunction and may provide important insights into neurobiological research related to WD motor dysfunction.
Collapse
|