1
|
Censi ST, Mariani-Costantini R, Granzotto A, Tomassini V, Sensi SL. Endogenous retroviruses in multiple sclerosis: A network-based etiopathogenic model. Ageing Res Rev 2024; 99:102392. [PMID: 38925481 DOI: 10.1016/j.arr.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The present perspective article proposes an etiopathological model for multiple sclerosis pathogenesis and progression associated with the activation of human endogenous retroviruses. We reviewed preclinical, clinical, epidemiological, and evolutionary evidence indicating how the complex, multi-level interplay of genetic traits and environmental factors contributes to multiple sclerosis. We propose that endogenous retroviruses transactivation acts as a critical node in disease development. We also discuss the rationale for combined anti-retroviral therapy in multiple sclerosis as a disease-modifying therapeutic strategy. Finally, we propose that the immuno-pathogenic process triggered by endogenous retrovirus activation can be extended to aging and aging-related neurodegeneration. In this regard, endogenous retroviruses can be envisioned to act as epigenetic noise, favoring the proliferation of disorganized cellular subpopulations and accelerating system-specific "aging". Since inflammation and aging are two sides of the same coin (plastic dis-adaptation to external stimuli with system-specific degree of freedom), the two conditions may be epiphenomenal products of increased epigenomic entropy. Inflammation accelerates organ-specific aging, disrupting communication throughout critical systems of the body and producing symptoms. Overlapping neurological symptoms and syndromes may emerge from the activity of shared molecular networks that respond to endogenous retroviruses' reactivation.
Collapse
Affiliation(s)
- Stefano T Censi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy.
| | - Renato Mariani-Costantini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Alberto Granzotto
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
2
|
Puente-Ruiz N, Ellis I, Bregu M, Chen C, Church HJ, Tylee KL, Gladston S, Hackett R, Oldham A, Virk S, Hendriksz C, Morris AA, Jones SA, Stepien KM. Long-term outcomes in two adult siblings with Fucosidosis - Diagnostic odyssey and clinical manifestations. Mol Genet Metab Rep 2023; 37:101009. [PMID: 38053939 PMCID: PMC10694746 DOI: 10.1016/j.ymgmr.2023.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 12/07/2023] Open
Abstract
Fucosidosis (OMIN# 230000) is a rare lysosomal storage disorder (LSDs) caused by mutations in the FUCA1 gene, leading to alpha-L-fucosidase deficiency; it is inherited as an autosomal recessive trait. Fucosidosis represents a disease spectrum with a wide variety of clinical features, but most affected patients have slow neurologic deterioration. Many patients die young and the long-term clinical outcomes in adult patients are poorly documented. Here, we report the long-term follow up of two Caucasian siblings, a 31-year-old man and 25-year-old woman. We describe the clinical, biochemical, radiological and genetic findings in two siblings affected by Fucosidosis and the differences between them after 19-years follow up. The dermatological features of the younger sibling have been reported previously by Bharati et al. (2007). Both patients have typical features of Fucosidosis, such as learning difficulties, ataxia, and angiokeratomas with differing severity. Case 1 presents severe ataxia with greater limitation of mobility, multiple dysostoses, angiokeratomas on his limbs, retinal vein enlargement and increased tortuosity in the eye and gastrointestinal symptoms. Biochemical analysis demonstrated a deficiency of alpha-fucosidase in leucocytes. Case 2 has a greater number of angiokeratomas and has suffered three psychotic episodes. The diagnosis of Fucosidosis was confirmed in cultured skin fibroblast at the age of 12 years. Molecular analysis of the FUCA1 gene showed a heterozygous mutation c.998G > A p.(Gly333Asp), with a pathogenic exon 4 deletion in the other allele in both patients. Conclusion. Fucosidosis presents a wide clinical heterogeneity and intrafamilial variability of symptoms. Psychosis and gastrointestinal symptoms have not been reported previously in Fucosidosis.
Collapse
Affiliation(s)
- Nuria Puente-Ruiz
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, UK
- Department of Clinical Medicine, Marqués de Valdecilla University Hospital, López-Albo Post Residency Program, Santander, Spain
| | - Ian Ellis
- Clinical Genetics, Royal Liverpool Children Hospital, Alder Hey, Liverpool, UK
| | - Marsel Bregu
- Ophthalmology Department, Warrington Hospital, Warrington, UK
| | - Cliff Chen
- Clinical Neuropsychology Department, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - Heather J. Church
- Willink Metabolic Unit, St Mary's Hospital, Manchester Foundation Trust, Manchester, UK
| | - Karen L. Tylee
- Willink Metabolic Unit, St Mary's Hospital, Manchester Foundation Trust, Manchester, UK
| | | | - Richard Hackett
- Neurology Department, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - Andrew Oldham
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, UK
| | - Surinder Virk
- Cardiology Department, Warrington Hospital, Warrington, UK
| | - Christian Hendriksz
- University of Pretoria, Steve Biko Academic Unit, Department of Paediatrics, Pretoria, South Africa
| | - Andrew A.M. Morris
- Willink Metabolic Unit, St Mary's Hospital, Manchester Foundation Trust, Manchester, UK
| | - Simon A. Jones
- Willink Metabolic Unit, St Mary's Hospital, Manchester Foundation Trust, Manchester, UK
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
3
|
Anderson G, Almulla AF, Reiter RJ, Maes M. Redefining Autoimmune Disorders' Pathoetiology: Implications for Mood and Psychotic Disorders' Association with Neurodegenerative and Classical Autoimmune Disorders. Cells 2023; 12:cells12091237. [PMID: 37174637 PMCID: PMC10177037 DOI: 10.3390/cells12091237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Although previously restricted to a limited number of medical conditions, there is a growing appreciation that 'autoimmune' (or immune-mediated) processes are important aspects of a wide array of diverse medical conditions, including cancers, neurodegenerative diseases and psychiatric disorders. All of these classes of medical conditions are associated with alterations in mitochondrial function across an array of diverse cell types. Accumulating data indicate the presence of the mitochondrial melatonergic pathway in possibly all body cells, with important consequences for pathways crucial in driving CD8+ T cell and B-cell 'autoimmune'-linked processes. Melatonin suppression coupled with the upregulation of oxidative stress suppress PTEN-induced kinase 1 (PINK1)/parkin-driven mitophagy, raising the levels of the major histocompatibility complex (MHC)-1, which underpins the chemoattraction of CD8+ T cells and the activation of antibody-producing B-cells. Many factors and processes closely associated with autoimmunity, including gut microbiome/permeability, circadian rhythms, aging, the aryl hydrocarbon receptor, brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) all interact with the mitochondrial melatonergic pathway. A number of future research directions and novel treatment implications are indicated for this wide collection of poorly conceptualized and treated medical presentations. It is proposed that the etiology of many 'autoimmune'/'immune-mediated' disorders should be conceptualized as significantly determined by mitochondrial dysregulation, with alterations in the mitochondrial melatonergic pathway being an important aspect of these pathoetiologies.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 54001, Iraq
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health Long School of Medicine, San Antonio, TX 78229, USA
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Skorvanek M, Baloghova J, Kulcsarova K, Winkelmann J, Jech R, Ostrozovicova M, Zech M. Adult-Onset Neurodegeneration in Nucleotide Excision Repair Disorders: More Common than Expected. Mov Disord 2022; 37:2323-2324. [PMID: 36221194 DOI: 10.1002/mds.29245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Matej Skorvanek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Janette Baloghova
- Department of Dermatovenerology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Dermatovenerology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Kristina Kulcsarova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Miriam Ostrozovicova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|